scholarly journals Changes in rat alpha 1-fetoprotein and albumin mRNA levels during fetal and neonatal development.

1980 ◽  
Vol 255 (21) ◽  
pp. 10036-10039 ◽  
Author(s):  
W.S. Liao ◽  
A.R. Conn ◽  
J.M. Taylor
1990 ◽  
Vol 10 (3) ◽  
pp. 1239-1243 ◽  
Author(s):  
J M Caron

Transcriptional activity of the albumin gene was induced in primary cultures of hepatocytes by adding dilute concentrations of basement membrane-like proteins derived from the EHS mouse sarcoma tumor to established type I collagen cultures. By immunofluorescence microscopy with antialbumin antibody, the population of cells responded uniformly to dilute EHS. Of the three major components of EHS, purified laminin was as effective as unfractionated EHS at inducing an increase in albumin mRNA levels and albumin secretion; type IV collagen and heparan sulfate proteoglycan were ineffective.


Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 217-225 ◽  
Author(s):  
S. Cascio ◽  
K.S. Zaret

Previous studies with embryonic tissue explants showed that cellular interactions with mesenchyme are required for endodermal cells to differentiate into hepatocytes. However, these studies assayed hepatocyte characteristics that were evident after days of culture, leaving open the question of whether the primary inductive interactions initiated hepatocyte differentiation, or whether subsequent steps, such as may occur during cell aggregation to form the liver, were necessary. Using the technique of in situ hybridization, we find that serum albumin mRNA, a liver-specific gene product, is first detected in hepatic precursor cells of the endoderm as early as 9.5 days of mouse embryo development, a full day prior to cell aggregation and liver formation. The endodermal cells express albumin mRNA upon migration into strands of connective tissue matrix within mesenchyme. Thus, the onset of differentiation of the endoderm is coincident with its interaction with mesenchyme. Early albumin transcripts are initiated at the same site of the albumin promoter as in adult hepatocytes, suggesting that at least a subset of the transcription factors that control albumin transcription in the adult may be involved in executing the early steps of hepatic determination. We also observe a sharp increase in albumin mRNA levels shortly after the definitive formation of the liver, apparently reflecting cell interactions that enhance hepatocyte differentiation. Hepatocyte differentiation is therefore similar in several respects to pancreatic exocrine cell development, and may represent a general pattern for gut-derived tissues. For both cell types, early interactions with mesenchyme are coincident with the initial expression of differentiated gene products at a low level in proliferating endoderm, and the initial pattern of expression is amplified upon organ formation.


1985 ◽  
Vol 5 (1) ◽  
pp. 214-225 ◽  
Author(s):  
A Orlofsky ◽  
L A Chasin

A well-differentiated rat hepatoma cell line, Fu5-5, yields variant clones whose rate of secretion of serum albumin ranges from 40 to less than 0.08 micrograms of albumin/mg of cell protein per 48 h. Clones were classified as high producers (10 to 40 micrograms/mg per 48 h), intermediate producers (1 to 10 micrograms/mg per 48 h), low producers (0.1 to 1.0 micrograms/mg per 48 h), and null variants (less than 0.1 micrograms/mg per 48 h). Albumin synthetic rates are proportional to secretion rates and range from 0.9 to less than 0.002% of total protein synthesis as measured by pulse-labeling. Steady-state albumin mRNA levels were measured by filter hybridization of fragmented, end-labeled mRNA and by Northern blotting. Message levels are proportional to albumin synthetic rates except for a high producer in which albumin mRNA is less elevated than the synthetic rate. The extent of methylation was quantitated at each of 24 CpG-containing sites or site clusters at the albumin locus. These sites span a region that contains the albumin gene as well as 10 kilobases of the 5' flank and 1 kilobase of the 3' flank. An 8-kilobase region is described, with boundaries in the 5' flank and in the middle of the gene, within which all 11 sites examined showed a correlation of undermethylation with the high-producer phenotype. In contrast, 12 of 13 sites outside of this region showed no phenotype correlation. Null variants derived from a high producer underwent de novo methylation of this domain. Six independent hybrid clones derived from the cross of a high producer with a null variant showed extinction of albumin production and hypermethylation of the domain. Apparently these cells retain the capacity for the de novo methylation of these specific sites.


1997 ◽  
Vol 328 (3) ◽  
pp. 937-944 ◽  
Author(s):  
Xiu-Jun WANG ◽  
P. Conrad HODGKINSON ◽  
C. Matthew WRIGHT ◽  
J. Alan PAINE

The isolation and culture of metabolically active hepatocytes by proteolytic digestion of the extracellular matrix of the liver results in the transcriptional silencing of liver-specific genes encoding cytochromes P-450 (CYP) and albumin together with an induction of cellular RNase activity. The levels of albumin mRNA are maintained in cultured hepatocytes at similar levels to that present in the intact liver for at least 24 h, whereas the major constitutively expressed CYP2C11 mRNA is rapidly degraded. Hepatocytes heat-shocked at 40 °C during the isolation procedure (which results in an induction of heat-shock protein mRNA species) blocks the increase in RNase activity and abrogates the loss of CYP2C11 mRNA for at least 4 h. Cycloheximide-dependent inhibition of protein synthesis blocks the temperature-dependent induction of heat-shock proteins without affecting the protection afforded to CYP2C11 mRNA, indicating that CYP2C11 mRNA levels are not directly dependent on heat-shock protein induction and suggesting that the induction of RNase activity might be responsible for the specific loss of CYP2C11 mRNA in hepatocytes isolated at 37 °C. Differential rates of degradation of CYP2C11 transcribed in vitro and of albumin mRNA are observed in the presence of cellular extracts from cultured hepatocytes isolated at 37 °C (which have maximally induced levels of cellular RNase activity) but not in comparable extracts from cultured hepatocytes isolated at 40 °C, supporting the hypothesis that an RNase activity is induced in culture that specifically degrades CYP2C11 mRNA but not albumin mRNA. These results suggest that an early event in hepatocyte de-differentiation involves the induction of RNase activity in addition to transcriptional silencing of liver-specific genes and that the induced RNase activity demonstrates specificity within liver-specific gene products.


1989 ◽  
Vol 258 (3) ◽  
pp. 663-668 ◽  
Author(s):  
L Ševaljević ◽  
S Ivanović-Matić ◽  
M Petrović ◽  
M Glibetić ◽  
D Pantelić ◽  
...  

At 12 h after scalding of rats a doubling of the hepatocyte nuclear DNA content, which arose from the presence of additional complete genomes and not from amplification of genes coding for the major acute-phase proteins or albumin, was observed. Examination of relative transcription rates per control DNA mass revealed that alpha 1-acid-glycoprotein and cysteine-proteinase-inhibitor genes remained constitutive, alpha- and gamma-fibrinogen and haptoglobin genes underwent transcriptional activation for 290 and 339% respectively, whereas the relative transcription rate of albumin decreased to 65% of the control level. Along with these changes, the alpha 1-acid glycoprotein, cysteine-proteinase inhibitor and the fibrinogen mRNA concentrations increased about 500%, haptoglobin mRNA 250%, whereas the albumin mRNA concentration fell to 86% of the control. The regulation of the mRNA levels was assessed by comparing the relative change in transcription rates expressed per control DNA content with the relative changes of mRNA concentrations. We arrived at the conclusion that the concentrations of alpha 1-acid-glycoprotein and cysteine-proteinase-inhibitor mRNAs were predominantly regulated by a post-transcriptional mechanism, albumin mRNA by a transcriptional mechanism, and the fibrinogen and haptoglobin mRNAs by a combination of both. The degree of change of the serum levels of the examined proteins was similar to that of their mRNA concentrations and was the result of the complete use of the available RNA templates in protein synthesis.


1987 ◽  
Vol 105 (6) ◽  
pp. 2877-2885 ◽  
Author(s):  
I Isom ◽  
I Georgoff ◽  
M Salditt-Georgieff ◽  
J E Darnell

Normal adult rat hepatocytes plated on rat tail collagen-coated dishes and fed a chemically defined medium supplemented with epidermal growth factor and dimethylsulfoxide (DMSO) were examined over a 40-d culture period for (a) the amount of albumin secreted; (b) steady-state albumin mRNA levels; (c) steady-state mRNA levels for six other liver-specific genes and three common genes; and (d)transcription of several liver-specific and common genes using isolated nuclei. DMSO-treated hepatocytes in culture for 40 d expressed albumin mRNA at 45% the level of normal liver and five other liver-specific genes at levels ranging from 21% to 72% of those in normal liver. The rate of synthesis of ligandin RNA using nuclei from 40-d hepatocytes in a nascent chain extension assay was 130% of the value obtained for normal liver, indicating that liverlike transcriptional activity for ligandin was maintained in this in vitro culture system. In contrast, the rates of synthesis of albumin and phosphoenolpyruvate carboxykinase (PepCK) mRNAs using nuclei from 40-d hepatocytes were 8% and less than 1%, respectively, and, therefore, were at levels that were much lower than was expected given the steady-state mRNA levels for these two genes. The discrepancy between the steady-state mRNA levels and rates of synthesis of RNA was analyzed, and the results suggest that the albumin and PepCK mRNAs from hepatocytes in culture may be more stable than those from liver. A plateau period for secretion of albumin, expression of albumin, alpha 1-antitrypsin, ligandin, phenylalanine hydroxylase, and PepCK mRNAs, and synthesis of albumin RNA using isolated nuclei was observed from days 6 to 40. The usefulness at a biological and molecular level of a hepatocyte culture system in which liver-specific genes are expressed over a long plateau period is discussed.


Sign in / Sign up

Export Citation Format

Share Document