scholarly journals Kinetics of the utilization of medium and long chain fatty acids by mutant of Escherichia coli defective in the fadL gene.

1979 ◽  
Vol 254 (18) ◽  
pp. 9130-9134
Author(s):  
W.D. Nunn ◽  
R.W. Simons ◽  
P.A. Egan ◽  
S.R. Maloy
2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Elias Kassab ◽  
Monika Fuchs ◽  
Martina Haack ◽  
Norbert Mehlmer ◽  
Thomas B. Brueck

Abstract Background Sustainable production of microbial fatty acids derivatives has the potential to replace petroleum based equivalents in the chemical, cosmetic and pharmaceutical industry. Most fatty acid sources for production oleochemicals are currently plant derived. However, utilization of these crops are associated with land use change and food competition. Microbial oils could be an alternative source of fatty acids, which circumvents the issue with agricultural competition. Results In this study, we generated a chimeric microbial production system that features aspects of both prokaryotic and eukaryotic fatty acid biosynthetic pathways targeted towards the generation of long chain fatty acids. We redirected the type-II fatty acid biosynthetic pathway of Escherichia coli BL21 (DE3) strain by incorporating two homologues of the beta-ketoacyl-[acyl carrier protein] synthase I and II from the chloroplastic fatty acid biosynthetic pathway of Arabidopsis thaliana. The microbial clones harboring the heterologous pathway yielded 292 mg/g and 220 mg/g DCW for KAS I and KAS II harboring plasmids respectively. Surprisingly, beta-ketoacyl synthases KASI/II isolated from A. thaliana showed compatibility with the FAB pathway in E. coli. Conclusion The efficiency of the heterologous plant enzymes supersedes the overexpression of the native enzyme in the E. coli production system, which leads to cell death in fabF overexpression and fabB deletion mutants. The utilization of our plasmid based system would allow generation of plant like fatty acids in E. coli and their subsequent chemical or enzymatic conversion to high end oleochemical products.


2010 ◽  
Vol 13 (4) ◽  
pp. 373-379 ◽  
Author(s):  
Sukhwan Soontravanich ◽  
J. Grant Landrum ◽  
Sarah A. Shobe ◽  
Chase M. Waite ◽  
John F. Scamehorn ◽  
...  

1995 ◽  
Vol 73 (5-6) ◽  
pp. 223-234 ◽  
Author(s):  
Dev Mangroo ◽  
Bernardo L. Trigatti ◽  
Gerhard E. Gerber

Long chain fatty acids are important substrates for energy production and lipid synthesis in prokaryotes and eukaryotes. Their cellular uptake represents an important first step leading to metabolism. This step is induced in Escherichia coli by growth in medium containing long chain fatty acids and in murine 3T3-L1 cells during differentiation to adipocytes. Consequently, these have been used extensively as model systems to study the cellular uptake of long chain fatty acids. Here, we present an overview of our current understanding of long chain fatty acid uptake in these cells. It consists of several distinct steps, mediated by a combination of biochemical and physico-chemical processes, and is driven by conversion of long chain fatty acids to acyl-CoA by acyl-CoA synthetase. An understanding of long chain fatty acid uptake may provide valuable insights into the roles of fatty acids in the regulation of cell signalling cascades, in the regulation of a variety of metabolic and transport processes, and in a variety of mammalian pathogenic conditions such as obesity and diabetes.Key words: acyl-CoA synthetase, adipocyte, Escherichia coli, fatty acid, transport, uptake.


Sign in / Sign up

Export Citation Format

Share Document