scholarly journals Why the lumbrical muscle should not be bigger—A force model of the lumbrical in the unloaded human finger

1997 ◽  
Vol 30 (11-12) ◽  
pp. 1107-1114 ◽  
Author(s):  
J.N.A.L. Leijnse
2011 ◽  
Vol 311-313 ◽  
pp. 1539-1545
Author(s):  
Wei Xiong ◽  
Qing Hui Wang ◽  
Cheng Zhong Zhang

In this paper, a novel solution combing heuristic constraints with physical-based method for virtual interaction is proposed. With which, a grasping simulation is divided into three stages including pregrasping, preliminary grasping and stable grasping and the two techniques have been used in different phases. A dexterous virtual hand, consisting of geometric model, kinematics model, collision model and contact force model, is also constructed to be used in this solution. By analyzing the physical structures and perceptual characteristics of human finger, a haptic rendering algorithm is presented to obtain natural and stable virtual interaction.


2010 ◽  
pp. 50-56
Author(s):  
Pablo R. Rubiolo ◽  
Guy Chaigne ◽  
Pierre Peturand ◽  
Jérôme Bigot ◽  
Jean-François Desseignes ◽  
...  

2020 ◽  
Vol 110 (11-12) ◽  
pp. 758-762
Author(s):  
Daniel Gauder ◽  
Michael Biehler ◽  
Benedict Stampfer ◽  
Benjamin Häfner ◽  
Volker Schulze ◽  
...  

Das Forschungsprojekt „Prozessintegrierte Softsensorik zur Oberflächenkonditionierung beim Außenlängsdrehen von 42CrMo4“ widmet sich der Entstehung und der In-process-Erfassung von industriell relevanten Randschichtzuständen. Im Speziellen werden sogenannte White Layer und Eigenspannungszustände untersucht. Durch die modulare Verknüpfung von zerstörungsfreier Prüftechnik, Simulationsergebnissen und Prozesswissen mittels Datenfusion wird ein Softsensor erforscht. Dieser soll im Rahmen einer adaptiven Regelung des Drehprozesses eingesetzt werden und eine gezielte Einstellung von vorteilhaften Randschichtzuständen erlauben. The research project „Process-integrated soft sensor technology for surface conditioning during external longitudinal turning of 42CrMo4“ is dedicated to the formation and in-process-detection of surface layers with industrial relevance. In particular, so-called white layers and residual stresses are investigated. A soft sensor is being researched through the modular combination of non-destructive testing technology and process knowledge by means of data fusion. This is to be used in the context of an adaptive control of the turning process in order to adjust beneficial surface states.


2020 ◽  
Vol 121 ◽  
pp. 42-53 ◽  
Author(s):  
I.M. Sticco ◽  
G.A. Frank ◽  
F.E. Cornes ◽  
C.O. Dorso

2021 ◽  
Vol 104 (1) ◽  
pp. 003685042110080
Author(s):  
Zheqin Yu ◽  
Jianping Tan ◽  
Shuai Wang

Shear stress is often present in the blood flow within blood-contacting devices, which is the leading cause of hemolysis. However, the simulation method for blood flow with shear stress is still not perfect, especially the multiphase flow model and experimental verification. In this regard, this study proposes an enhanced discrete phase model for multiphase flow simulation of blood flow with shear stress. This simulation is based on the discrete phase model (DPM). According to the multiphase flow characteristics of blood, a virtual mass force model and a pressure gradient influence model are added to the calculation of cell particle motion. In the experimental verification, nozzle models were designed to simulate the flow with shear stress, varying the degree of shear stress through different nozzle sizes. The microscopic flow was measured by the Particle Image Velocimetry (PIV) experimental method. The comparison of the turbulence models and the verification of the simulation accuracy were carried out based on the experimental results. The result demonstrates that the simulation effect of the SST k- ω model is better than other standard turbulence models. Accuracy analysis proves that the simulation results are accurate and can capture the movement of cell-level particles in the flow with shear stress. The results of the research are conducive to obtaining accurate and comprehensive analysis results in the equipment development phase.


Author(s):  
Guobiao Ji ◽  
Liang Cheng ◽  
Shaohua Fei ◽  
Jiangxiong Li ◽  
Yinglin Ke

Through-thickness reinforcement is a promising solution to the problem of delamination susceptibility in laminated composites. Modeling Z-pin–prepreg interaction is essential for accurate robotics-assisted Z-pin insertion. In this paper, a novel Z-pin insertion force model combining the classical cohesive finite element (FE) method with a dynamic analytical fracture mechanics model is proposed. The velocity-dependent cohesive elements, in which the fracture toughness is provided by the analytical model, are implemented in Z-pin insertion FE model to predict the crack initiation and propagation. Then Z-pin insertion experiments are performed on prepreg sample with metallic Z-pins at different velocities to identify the analytical model parameters and validate the simulation predictions offered by the model. Dynamics of Z-pin interaction with inhomogeneous prepreg is described and the effects of insertion velocity on prepreg contact force are studied. Results show that the force model agrees well with experiments and the fracture toughness rises with the increasing Z-pin insertion velocity.


2021 ◽  
Vol 126 ◽  
pp. 108479
Author(s):  
Poushpi Dwivedi ◽  
Dhanesh Tiwary ◽  
Pradeep Kumar Mishra ◽  
Shahid Suhail Narvi ◽  
Ravi Prakash Tewari
Keyword(s):  

Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 60
Author(s):  
Eun-Hyuk Lee ◽  
Sang-Hoon Kim ◽  
Kwang-Seok Yun

Haptic displays have been developed to provide operators with rich tactile information using simple structures. In this study, a three-axis tactile actuator capable of thermal display was developed to deliver tactile senses more realistically and intuitively. The proposed haptic display uses pneumatic pressure to provide shear and normal tactile pressure through an inflation of the balloons inherent in the device. The device provides a lateral displacement of ±1.5 mm for shear haptic feedback and a vertical inflation of the balloon of up to 3.7 mm for normal haptic feedback. It is designed to deliver thermal feedback to the operator through the attachment of a heater to the finger stage of the device, in addition to mechanical haptic feedback. A custom-designed control module is employed to generate appropriate haptic feedback by computing signals from sensors or control computers. This control module has a manual gain control function to compensate for the force exerted on the device by the user’s fingers. Experimental results showed that it could improve the positional accuracy and linearity of the device and minimize hysteresis phenomena. The temperature of the device could be controlled by a pulse-width modulation signal from room temperature to 90 °C. Psychophysical experiments show that cognitive accuracy is affected by gain, and temperature is not significantly affected.


Sign in / Sign up

Export Citation Format

Share Document