scholarly journals Involvement of the peroxisome proliferator-activated receptor α in regulating long-chain acyl-CoA thioesterases

2000 ◽  
Vol 41 (5) ◽  
pp. 814-823 ◽  
Author(s):  
Mary C. Hunt ◽  
Per J.G. Lindquist ◽  
Jeffrey M. Peters ◽  
Frank J. Gonzalez ◽  
Ulf Diczfalusy ◽  
...  
2006 ◽  
Vol 290 (6) ◽  
pp. H2480-H2497 ◽  
Author(s):  
David J. Durgan ◽  
Justin K. Smith ◽  
Margaret A. Hotze ◽  
Oluwaseun Egbejimi ◽  
Karalyn D. Cuthbert ◽  
...  

The molecular mechanism(s) responsible for channeling long-chain fatty acids (LCFAs) into oxidative versus nonoxidative pathways is (are) poorly understood in the heart. Intracellular LCFAs are converted to long-chain fatty acyl-CoAs (LCFA-CoAs) by a family of long-chain acyl-CoA synthetases (ACSLs). Cytosolic thioesterase 1 (CTE1) hydrolyzes cytosolic LCFA-CoAs to LCFAs, generating a potential futile cycle at the expense of ATP utilization. We hypothesized that ACSL isoforms and CTE1 are differentially regulated in the heart during physiological and pathophysiological conditions. Using quantitative RT-PCR, we report that the five known acsl isoforms ( acsl1, acsl3, acsl4, acsl5, and acsl6) and cte1 are expressed in whole rat and mouse hearts, as well as adult rat cardiomyocytes (ARCs). Streptozotocin-induced insulin-dependent diabetes (4 wk) and fasting (≤24 h) both dramatically induced cte1 and repressed acsl6 mRNA, with no significant effects on the other acsl isoforms. In contrast, high-fat feeding (4 wk) induced cte1 without affecting expression of the acsl isoforms in the heart. Investigation into the mechanism(s) responsible for these transcriptional changes uncovered roles for peroxisome proliferator-activated receptor-α (PPARα) and insulin as regulators of specific acsl isoforms and cte1 in the heart. Culturing ARCs with oleate (0.1–0.4 mM) or the PPARα agonists WY-14643 (1 μM) and fenofibrate (10 μM) consistently induced acsl1 and cte1. Conversely, PPARα null mouse hearts exhibited decreased acsl1 and cte1 expression. Culturing ARCs with insulin (10 nM) induced acsl6, whereas specific loss of insulin signaling within the heart (cardiac-specific insulin receptor knockout mice) caused decreased acsl6 expression. Our data expose differential regulation of acsl isoforms and cte1 in the heart, where acsl1 and cte1 are PPARα-regulated genes, whereas acsl6 is an insulin-regulated gene.


2019 ◽  
Vol 316 (5) ◽  
pp. E880-E894 ◽  
Author(s):  
Amar B. Singh ◽  
Chin Fung K. Kan ◽  
Fredric B. Kraemer ◽  
Raymond A. Sobel ◽  
Jingwen Liu

Long-chain acyl-CoA synthetase 4 (ACSL4) has a unique substrate specificity for arachidonic acid. Hepatic ACSL4 is coregulated with the phospholipid (PL)-remodeling enzyme lysophosphatidylcholine (LPC) acyltransferase 3 by peroxisome proliferator-activated receptor δ to modulate the plasma triglyceride (TG) metabolism. In this study, we investigated the acute effects of hepatic ACSL4 deficiency on lipid metabolism in adult mice fed a high-fat diet (HFD). Adenovirus-mediated expression of a mouse ACSL4 shRNA (Ad-shAcsl4) in the liver of HFD-fed mice led to a 43% reduction of hepatic arachidonoyl-CoA synthetase activity and a 53% decrease in ACSL4 protein levels compared with mice receiving control adenovirus (Ad-shLacZ). Attenuated ACSL4 expression resulted in a substantial decrease in circulating VLDL-TG levels without affecting plasma cholesterol. Lipidomics profiling revealed that knocking down ACSL4 altered liver PL compositions, with the greatest impact on accumulation of abundant LPC species (LPC 16:0 and LPC 18:0) and lysophosphatidylethanolamine (LPE) species (LPE 16:0 and LPE 18:0). In addition, fasting glucose and insulin levels were higher in Ad-shAcsl4-transduced mice versus control (Ad-shLacZ). Glucose tolerance testing further indicated an insulin-resistant phenotype upon knockdown of ACSL4. These results provide the first in vivo evidence that ACSL4 plays a role in plasma TG and glucose metabolism and hepatic PL synthesis of hyperlipidemic mice.


2009 ◽  
Vol 421 (2) ◽  
pp. 311-322 ◽  
Author(s):  
Jie Wei ◽  
Hye Won Kang ◽  
David E. Cohen

Them2 (thioesterase superfamily member 2) is a 140-amino-acid protein of unknown biological function that comprises a single hotdog fold thioesterase domain. On the basis of its putative association with mitochondria, accentuated expression in oxidative tissues and interaction with StarD2 (also known as phosphatidylcholine-transfer protein, PC-TP), a regulator of fatty acid metabolism, we explored whether Them2 functions as a physiologically relevant fatty acyl-CoA thioesterase. In solution, Them2 formed a stable homotetramer, which denatured in a single transition at 59.3 °C. Them2 exhibited thioesterase activity for medium- and long-chain acyl-CoAs, with Km values that decreased exponentially as a function of increasing acyl chain length. Steady-state kinetic parameters for Them2 were characteristic of long-chain mammalian acyl-CoA thioesterases, with minimal values of Km and maximal values of kcat/Km observed for myristoyl-CoA and palmitoyl-CoA. For these acyl-CoAs, substrate inhibition was observed when concentrations approached their critical micellar concentrations. The acyl-CoA thioesterase activity of Them2 was optimized at physiological temperature, ionic strength and pH. For both myristoyl-CoA and palmitoyl-CoA, the addition of StarD2 increased the kcat of Them2. Enzymatic activity was decreased by the addition of phosphatidic acid/phosphatidylcholine small unilamellar vesicles. Them2 expression, which was most pronounced in mouse heart, was associated with mitochondria and was induced by activation of PPARα (peroxisome-proliferator-activated receptor α). We conclude that, under biological conditions, Them2 probably functions as a homotetrameric long-chain acyl-CoA thioesterase. Accordingly, Them2 has been designated as the 13th member of the mammalian acyl-CoA thioesterase family, Acot13.


1999 ◽  
Vol 274 (48) ◽  
pp. 34317-34326 ◽  
Author(s):  
Mary C. Hunt ◽  
Sari E. B. Nousiainen ◽  
Merja K. Huttunen ◽  
Kenji E. Orii ◽  
L. Thomas Svensson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document