Evolution of IR spectra of a weakly-bound OCO⋯HCl complex with increasing CO2 density from the gas to liquid phase

2001 ◽  
Vol 598 (2-3) ◽  
pp. 205-211 ◽  
Author(s):  
K.S Rutkowski ◽  
K.G Tokhadze ◽  
P Lipkowski ◽  
A Koll ◽  
R Ahmedjonov ◽  
...  
1977 ◽  
Vol 55 (6) ◽  
pp. 496-505 ◽  
Author(s):  
J. L. Urbaniak ◽  
I. R. Dagg ◽  
G. E. Reesor

Measurements of collision induced microwave absorption at 2.3 cm−1 have been carried out on gaseous N2 in the temperature range from 124 to 156 K and on liquid N2 in the temperature range from 77 to 125 K. The low density gaseous measurements have been found to agree well with the previous microwave and infrared results and with existing theories. The dependence of the absorption on density has been obtained at 156 K up to a density of 400 amagat and the results compared with the absorption in the liquid at the same density. The absorption is found to be a function of temperature and density but does not depend on the molecules being in a gas or liquid phase. Results for liquid CH4 and CF4 are reported and compared with previous microwave gaseous results. In contrast to the results for N2 the dependence on the square of the density changes by a relatively small amount in going from the low density gas to liquid densities.


1984 ◽  
Vol 39 (11) ◽  
pp. 1536-1540 ◽  
Author(s):  
Reinhard Schulz ◽  
Armin Schweig

Abstract The gas-phase pyrolysis of cyclohexeno-1,2,3-selenadiazole and cycloocteno-1,2,3-selenadiazole has been investigated by variable temperature photoelectron spectroscopy and matrix IR spectroscopy. The ring contracted, highly reactive products cyclopentylidenselenoketene (cyclopentylidenmethanselone) and cycloheptylidenselenoketene (cycloheptylidenmethanselone) - which had not been found in liquid phase thermolysis experiments - have been detected. Additionally HeI photoelectron and IR spectra of analogous ketenes and thioketenes are presented for comparative reasons.


Author(s):  
Julia Ann Davies ◽  
Shengfu Yang ◽  
Andrew M Ellis

Infrared (IR) spectra of several hydrocarbon cations are reported, namely CH3+, CH4+, CH5+, CH5+(CH4) and C2H5+. The spectra were generated from weakly-bound helium-cation complexes formed by electron ionization of helium...


Life ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 34 ◽  
Author(s):  
Altun ◽  
Bleda ◽  
Trindle

The production of complex molecules in ammonia–carbon dioxide ices is presumed to pass through species of formula H3N:CO2 with further addition of ammonia and carbon dioxide. One possible landmark, carbamic acid, H2NCOOH, has been implicated among the products of warming and irradiation of such ices. Experimental study of the IR spectra of residues has suggested the presence of related species, including weakly bound 1:1 and 2:1 complexes of ammonia with carbon dioxide, zwitterionic carbamic acid, ammonium carbamate, and the dimer of carbamic acid. We computed the energetics and vibrational spectra of these species as well as the complex between ammonia and carbamic acid for gas and condensed phases. By means of a new spectrum-matching scoring between computed and observed vibrational spectra, we infer species that are most probably present. The leading candidates are ammonium carbamate, the carbamic acid–ammonia complex, and the carbamic acid dimer.


2020 ◽  
Vol 124 (19) ◽  
pp. 3896-3903
Author(s):  
Peng Liu ◽  
Yang Li ◽  
S. Mani Sarathy ◽  
William L. Roberts

Sign in / Sign up

Export Citation Format

Share Document