Determination of mesopore size of aerogels from thermal conductivity measurements

2002 ◽  
Vol 298 (2-3) ◽  
pp. 287-292 ◽  
Author(s):  
Ok-Joo Lee ◽  
Kun-Hong Lee ◽  
Tae Jin Yim ◽  
Sun Young Kim ◽  
Ki-Pung Yoo
1969 ◽  
Vol 17 (1) ◽  
pp. 71-79
Author(s):  
A.I. Golovanov

Experiments were made to determine the influence of size of soil sample, convection and water flow on the determination of thermal conductivity of soils using a thin needle (0.05 cm radius, 8.5 cm in length) as the heating element and copper cylinders for sample containers. For measurements during a period of 100 seconds the diameter of the sample must be at least 4 cm and to avoid any influence of convection measurements should not exceed 100 seconds. When heating elements are placed horizontally to measure simultaneously the thermal conductivity of different soil layers they should be placed at least 10 cm apart. Thermal conductivity measurements could be used to determine flow velocities of water in coarse sand samples provided that the real flow velocity was highev than 0.35 cm/ min. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1991 ◽  
Vol 44 (5) ◽  
pp. 2142-2148 ◽  
Author(s):  
B. Nysten ◽  
J.-P. Issi ◽  
R. Barton ◽  
D. R. Boyington ◽  
J. G. Lavin

2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Patrick E. Hopkins ◽  
Leslie M. Phinney

The thermal performance of microelectromechanical systems devices is governed by the structure and composition of the constituent materials as well as the geometrical design. With the continued reduction in the characteristic sizes of these devices, experimental determination of the thermal properties becomes more difficult. In this study, the thermal conductivity of polycrystalline silicon (polysilicon) microbridges are measured with the transient 3ω technique and compared with measurements on the same structures using a steady state Joule heating technique. The microbridges with lengths from 200 μm to 500 μm were designed and fabricated using the Sandia National Laboratories SUMMiT V™ surface micromachining process. The advantages and disadvantages of the two experimental methods are examined for suspended microbridge geometries. The differences between the two measurements, which arise from the geometry of the test structures and electrical contacts, are explained by bond pad heating and thermal resistance effects.


Author(s):  
Patrick E. Hopkins ◽  
Leslie M. Phinney

The thermal properties of microelectromechanical systems (MEMS) devices are governed by the structure and composition of the constituent materials as well as the geometrical design. With the continued reduction of the characteristic sizes of these devices, experimental determination of the thermal properties becomes more difficult. In this study, the thermal conductivity of polycrystalline silicon (polysilicon) microbridges are measured with the transient 3ω technique and compared to measurements on the same structures using a steady state joule heating technique. The microbridges with lengths from 200 microns to 500 microns were designed and fabricated using the Sandia National Laboratories SUMMiT™ V surface micromachining process. The differences between the two measurements, which arise from the geometry of the test structures, are explained by bond pad heating and thermal boundary resistance effects.


Sign in / Sign up

Export Citation Format

Share Document