A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organic-matter burial and sea level

2000 ◽  
Vol 162 (3-4) ◽  
pp. 211-223 ◽  
Author(s):  
Matthew R. Saltzman ◽  
Robert L. Ripperdan ◽  
M.D. Brasier ◽  
Kyger C. Lohmann ◽  
Richard A. Robison ◽  
...  
2021 ◽  
Author(s):  
Linda Elkins-Tanton ◽  
Steven Grasby ◽  
Benjamin Black ◽  
Roman Veselovskiy ◽  
Omid Ardakani ◽  
...  

<p>The Permo-Triassic Extinction was the most severe in Earth history. The Siberian Traps eruptions are strongly implicated in the global atmospheric changes that likely drove the extinction. A sharp negative carbon isotope excursion coincides within geochronological uncertainty with the oldest dated rocks from the Norilsk section of the Siberian flood basalts. The source of this light carbon has been debated for decades.</p><p>We focused on the voluminous volcaniclastic rocks of the Siberian Traps, relatively unstudied as potential carriers of carbon-bearing gases. Over six field seasons we collected rocks from across the Siberian platform and show the first direct evidence that the earliest eruptions particularly in the southern part of the province burned large volumes of a combination of vegetation and coal. Samples from the Maymecha-Kotuy region, from the Nizhnyaya Tunguska, Podkamennaya Tunguska, and Angara Rivers all show evidence of high-temperature organic matter carbonization and combustion.</p><p>Field evidence indicates a process in which ascending magmas entrain xenoliths of coal and carbonaceous sediments that are carbonized in the subsurface and also combusted either through reduction of magmas or when exposed to the atmosphere. We demonstrate that the volume and composition of organic matter interactions with magmas may explain the global carbon isotope signal, and have significantly driven the extinction.</p>


2019 ◽  
Vol 156 (10) ◽  
pp. 1805-1819 ◽  
Author(s):  
Jing Huang ◽  
Yali Chen ◽  
Xuelei Chu ◽  
Tao Sun

AbstractThe Steptoean Positive Carbon Isotope Excursion (SPICE) is globally distributed in late Cambrian sedimentary records but controversially heterogeneous in its magnitudes. Here we use multiple geochemical proxies to investigate the late Cambrian carbonates from the Tangwangzhai section in North China, which were deposited in a shallow coastal environment with three depositional sequences (S1–S3). Each sequence comprises a transgressive systems tract (TST) and a highstand systems tract (HST). The REE + Y and trace element records are consistent with the depositional condition and indicate that terrigenous influence was more significant in the TST than HST. δ13Ccarb and δ34SCAS are low in the TST relative to HST, consistent with the scenario that terrigenous inputs were profoundly aggressive to seawater by introducing 13C-depleted and 34S-depleted materials. Within the TST of S2, the SPICE excursion shows a scaled-down δ13Ccarb positive shift (∼1.7 ‰) relative to its general records (∼4–6 ‰); the corresponding δ34SCAS show no positive excursion. This ‘atypical’ SPICE record is attributed to enhanced 13C-depleted and 34S-depleted terrigenous influence during the TST, which would reduce the amplitude of δ13Ccarb excursion, and even obscure δ34SCAS excursion. Meanwhile the subaerial unconformity at the base of TST would also cause a partially missing and a ‘snapshot’ preservation. Our study confirms significant local influence to the SPICE records, and further supports the heterogeneity and low sulphate concentrations of the late Cambrian seawater, because of which the SPICE records may be vulnerable to specific depositional conditions (e.g. sea-level, terrigenous input).


2015 ◽  
Vol 11 (4) ◽  
pp. 669-685 ◽  
Author(s):  
C. Consolaro ◽  
T. L. Rasmussen ◽  
G. Panieri ◽  
J. Mienert ◽  
S. Bünz ◽  
...  

Abstract. We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (~ 80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dates reveal a detailed chronology for the last 14 ka BP. The δ 13C record measured on the benthonic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values termed carbon isotope excursion (CIE I and CIE II, respectively). The values were as low as −4.37‰ in CIE I, correlating with the Bølling–Allerød interstadials, and as low as −3.41‰ in CIE II, correlating with the early Holocene. In the Bølling–Allerød interstadials, the planktonic foraminifera also show negative values, probably indicating secondary methane-derived authigenic precipitation affecting the foraminiferal shells. After a cleaning procedure designed to remove authigenic carbonate coatings on benthonic foraminiferal tests from this event, the 13C values are still negative (as low as −2.75‰). The CIE I and CIE II occurred during periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic, suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.


2011 ◽  
Vol 168 (4) ◽  
pp. 851-862 ◽  
Author(s):  
Mark A. Woods ◽  
Philip R. Wilby ◽  
Melanie J. Leng ◽  
Adrian W.A. Rushton ◽  
Mark Williams

2016 ◽  
Vol 128 (9-10) ◽  
pp. 1352-1366 ◽  
Author(s):  
Allison A. Baczynski ◽  
Francesca A. McInerney ◽  
Scott L. Wing ◽  
Mary J. Kraus ◽  
Paul E. Morse ◽  
...  

2016 ◽  
Vol 155 (4) ◽  
pp. 865-877 ◽  
Author(s):  
LUKE E. FAGGETTER ◽  
PAUL B. WIGNALL ◽  
SARA B. PRUSS ◽  
YADONG SUN ◽  
ROBERT J. RAINE ◽  
...  

AbstractGlobally, the Series 2 – Series 3 boundary of the Cambrian System coincides with a major carbon isotope excursion, sea-level changes and trilobite extinctions. Here we examine the sedimentology, sequence stratigraphy and carbon isotope record of this interval in the Cambrian strata (Durness Group) of NW Scotland. Carbonate carbon isotope data from the lower part of the Durness Group (Ghrudaidh Formation) show that the shallow-marine, Laurentian margin carbonates record two linked sea-level and carbon isotopic events. Whilst the carbon isotope excursions are not as pronounced as those expressed elsewhere, correlation with global records (Sauk I – Sauk II boundary andOlenellusbiostratigraphic constraint) identifies them as representing the local expression of the ROECE and DICE. The upper part of the ROECE is recorded in the basal Ghrudaidh Formation whilst the DICE is seen around 30m above the base of this unit. Both carbon isotope excursions co-occur with surfaces interpreted to record regressive–transgressive events that produced amalgamated sequence boundaries and ravinement/flooding surfaces overlain by conglomerates of reworked intraclasts. The ROECE has been linked with redlichiid and olenellid trilobite extinctions, but in NW Scotland,Olenellusis found after the negative peak of the carbon isotope excursion but before sequence boundary formation.


Sign in / Sign up

Export Citation Format

Share Document