scholarly journals Carbon isotope (δ<sup>13</sup>C) excursions suggest times of major methane release during the last 14 kyr in Fram Strait, the deep-water gateway to the Arctic

2015 ◽  
Vol 11 (4) ◽  
pp. 669-685 ◽  
Author(s):  
C. Consolaro ◽  
T. L. Rasmussen ◽  
G. Panieri ◽  
J. Mienert ◽  
S. Bünz ◽  
...  

Abstract. We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (~ 80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dates reveal a detailed chronology for the last 14 ka BP. The δ 13C record measured on the benthonic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values termed carbon isotope excursion (CIE I and CIE II, respectively). The values were as low as −4.37‰ in CIE I, correlating with the Bølling–Allerød interstadials, and as low as −3.41‰ in CIE II, correlating with the early Holocene. In the Bølling–Allerød interstadials, the planktonic foraminifera also show negative values, probably indicating secondary methane-derived authigenic precipitation affecting the foraminiferal shells. After a cleaning procedure designed to remove authigenic carbonate coatings on benthonic foraminiferal tests from this event, the 13C values are still negative (as low as −2.75‰). The CIE I and CIE II occurred during periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic, suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.

2014 ◽  
Vol 10 (5) ◽  
pp. 4191-4227 ◽  
Author(s):  
C. Consolaro ◽  
T. L. Rasmussen ◽  
G. Panieri ◽  
J. Mienert ◽  
S. Bünz ◽  
...  

Abstract. We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (∼80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dating reveals a detailed chronology for the last 14 ka BP. The δ13C record measured on the benthic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values, as low as −4.37‰ in the Bølling–Allerød interstadials and as low as −3.41‰ in the early Holocene. After cleaning procedure designed to remove all authigenic carbonate coatings on benthic foraminiferal tests, the 13C values are still negative (as low as −2.75‰). We have interpreted these negative carbon isotope excursions (CIEs) to record past methane release events, resulting from the incorporation of 13C-depleted carbon from methane emissions into the benthic foraminiferal shells. The CIEs during the Bølling–Allerød interstadials and the early Holocene relate to periods of ocean warming, sea level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.


2016 ◽  
Vol 53 (7) ◽  
pp. 725-730 ◽  
Author(s):  
John A. Blain ◽  
David C. Ray ◽  
James R. Wheeley

The Wenlock–Ludlow series boundary (Silurian) has been recognized as a time of pronounced sea-level rise and the end of a globally recognized Late Homerian Stage (Mulde) positive carbon isotope excursion (CIE). However, the precise timing and synchronicity of the end of the excursion with respect to the Wenlock–Ludlow boundary is debated. Within the type Wenlock and Ludlow areas (UK), high-resolution δ13Ccarb isotope data are presented across the Wenlock–Ludlow boundary, and within a range of carbonate platform settings. Correlation between sections and depositional settings has been based upon the characteristics of high-order sea-level fluctuations (parasequences). Comparisons between parasequence-bounded δ13Ccarb values reveal clear spatial variations, with lighter values recorded from more distal settings and heavier values from shallower settings. Temporal variations in the δ13Ccarb values are also documented and appear to reflect local variations in carbonate provenance and productivity in response to sea-level rise. While δ13Ccarb values converge in all sections towards the Wenlock–Ludlow boundary, the apparent end of the Mulde CIE appears diachronous and is progressively older within more distal settings.


1998 ◽  
Vol 17 (2) ◽  
pp. 97-103 ◽  
Author(s):  
M. K. Boudagher-Fadel ◽  
F. T. Banner ◽  
T. N. Gorbachik ◽  
M. D. Simmons ◽  
J. E. Whittaker

Abstract. In order to establish the relationship between the smooth, microperforate praehedbergellid forms of the genus Blefuscuiana with the younger, macroperforate and muricate forms typical of Hedbergella, two similar taxa but with the different characters of the two genera, are studied here: Blefuscuiana praetrocoidea (Kretchmar &amp; Gorbachik) and its descendant Hedbergella trocoidea (Gandolfi), the type species of Hedbergella, and which typifies the Hedbergellidae.B. praetrocoidea was only found in the Early Aptian in the North Tethys. H. trocoidea ranges from the Late Aptian to Early Albian (?M. Albian) and is a cosmopolitan species. It evolves into Ticinella roberti (Gandolfi), a Late Aptian–Albian species with fused portici. The evolution of the Praehedbergellidae into the Hedbergellidae appears to be related to a relative sea-level rise in the Late Aptian and Albian (and the opening of the Proto-Atlantic) which provided a number of deep-water niches which the Hedbergellidae occupied.


Author(s):  
Dirk J. Beets ◽  
Adam J. F. van der Spek

AbstractFlooding of the southern part of the North Sea occurred between 9000 and 8000 BP, when the rate of relative sea-level rise was on the order of 0.7 cm per year for the Dover Strait Region and 1.6 cm per year for the area north of the Frisian Islands, forcing the shoreline to recede rapidly. When relative sea-level rise decelerated after 7000 BP for the Belgian coast and 6000 BP for the central Netherlands coast, sediment supply by the tidal currents balanced the creation of accommodation space in the estuaries and other back-barrier basins. Consequently, the barrier started to stabilize, and the tidal basins and their inlets silted up. Between 5500 and 4500 BP, the Belgian coastal plain changed into a freshwater marsh with peat accumulation, and the same happened 500–1000 years later in the western provinces of the Netherlands. The E-W running barrier/back-barrier system of the Frisian Islands in the northern Netherlands stayed open until today, however, because of lower sediment supply.The period between 4000 and 2000 BP was relatively quiet due to the strong deceleration of the rate of sea-level rise; peat cushions developed behind the barriers, which were straightened by erosion of the headlands. Major and often catastrophic flooding occurred in the Middle Ages, when the estuaries in the southwestern part of the Netherlands formed.About 226 (± 15%) × 109 m3 sediment, mostly sand, is stored in the barriers and back-barrier basins of the Netherlands, 70% of which was deposited prior to 5000 BP. About 10% of the stored sediment is estimated to be of alluvial origin. Most of the sediment is derived by the erosion of the Pleistocene basement during recession of the barriers, but tide-induced crossshore transport from the North Sea forms an additional source for the barriers and back-barriers of the west-facing coast of the Netherlands.


2019 ◽  
Vol 70 (3) ◽  
pp. 209-221
Author(s):  
Sigitas Radzevičius ◽  
Paweł Raczyński ◽  
Marius Užomeckas ◽  
Audrius Norkus ◽  
Andrej Spiridonov

Abstract The mid–late Homerian Age of the Silurian Period was a time of intense changes in biota, oceanic chemistry, and sea level and is known as the lundgreni extinction (for the graptolite extinctions), the Mulde bioevent (for the conodont turnover event) or the Homerian carbon isotope excursion (CIE) probably related to glacially influenced climate perturbation. New information on this interval from the deep water sedimentary and graptolite succession of the Kielce Region (Holy Cross Mountains, Poland) of the northern margin of the Małopolska Block is presented here based on analysis of the Prągowiec Ravine section. The lundgreni–nilssoni graptolite biozones interval have been recognized there. This interval is composed by dark shales with very rare benthic fauna, which indicate the deep open-marine (pelagic) paleoenvironment. Ten samples were taken for the δ13Corg analysis from the lundgreni (2 samples), parvus (2 samples), praedeubeli (2 samples), praedeubeli–deubeli (1 sample), ludensis (2 samples) and nilssoni (1 sample) biozones. According to the δ13Corg results, the first positive δ13Corg excursion of the Mulde Bioevent is well recognized. The δ13Corg values rise from −30.7 – −30.1 ‰ in the lundgreni Biozone to −29.3 – −28.7 ‰ in the parvus Biozone and fall below −30 ‰ in the praedeubeli–deubeli interval. The second positive δ13Corg peak of the Mulde Event was not recognized in the Prągowiec Ravine. Based on the numerical comparisons using Raup-Crick metric of co-occurrences of graptolite species, the upper Homerian was characterized by significant between-biozone turnover of these taxa at the given locality.


2012 ◽  
Vol 16 (7) ◽  
pp. 1845-1862 ◽  
Author(s):  
F. Jørgensen ◽  
W. Scheer ◽  
S. Thomsen ◽  
T. O. Sonnenborg ◽  
K. Hinsby ◽  
...  

Abstract. Geophysical techniques are increasingly being used as tools for characterising the subsurface, and they are generally required to develop subsurface models that properly delineate the distribution of aquifers and aquitards, salt/freshwater interfaces, and geological structures that affect groundwater flow. In a study area covering 730 km2 across the border between Germany and Denmark, a combination of an airborne electromagnetic survey (performed with the SkyTEM system), a high-resolution seismic survey and borehole logging has been used in an integrated mapping of important geological, physical and chemical features of the subsurface. The spacing between flight lines is 200–250 m which gives a total of about 3200 line km. About 38 km of seismic lines have been collected. Faults bordering a graben structure, buried tunnel valleys, glaciotectonic thrust complexes, marine clay units, and sand aquifers are all examples of geological structures mapped by the geophysical data that control groundwater flow and to some extent hydrochemistry. Additionally, the data provide an excellent picture of the salinity distribution in the area and thus provide important information on the salt/freshwater boundary and the chemical status of groundwater. Although the westernmost part of the study area along the North Sea coast is saturated with saline water and the TEM data therefore are strongly influenced by the increased electrical conductivity there, buried valleys and other geological elements are still revealed. The mapped salinity distribution indicates preferential flow paths through and along specific geological structures within the area. The effects of a future sea level rise on the groundwater system and groundwater chemistry are discussed with special emphasis on the importance of knowing the existence, distribution and geometry of the mapped geological elements, and their control on the groundwater salinity distribution is assessed.


2021 ◽  
Vol 9 (7) ◽  
pp. 751
Author(s):  
Jenny R. Allen ◽  
Jeffrey C. Cornwell ◽  
Andrew H. Baldwin

Persistence of tidal wetlands under conditions of sea level rise depends on vertical accretion of organic and inorganic matter, which vary in their relative abundance across estuarine gradients. We examined the relative contribution of organic and inorganic matter to vertical soil accretion using lead-210 (210Pb) dating of soil cores collected in tidal wetlands spanning a tidal freshwater to brackish gradient across a Chesapeake Bay subestuary. Only 8 out of the 15 subsites had accretion rates higher than relative sea level rise for the area, with the lowest rates of accretion found in oligohaline marshes in the middle of the subestuary. The mass accumulation of organic and inorganic matter was similar and related (R2 = 0.37). However, owing to its lower density, organic matter contributed 1.5–3 times more toward vertical accretion than inorganic matter. Furthermore, water/porespace associated with organic matter accounted for 82%–94% of the total vertical accretion. These findings demonstrate the key role of organic matter in the persistence of coastal wetlands with low mineral sediment supply, particularly mid-estuary oligohaline marshes.


2021 ◽  
Author(s):  
Frances E. Dunn ◽  
Philip S. J. Minderhoud

&lt;p&gt;As one of the largest deltas in the world, the Mekong delta is home to over 17 million people and supports internationally important agriculture. Recently deposited sediment compacts and causes subsidence in deltas, so they require regular sediment input to maintain elevation relative to sea level. These processes are complicated by human activities, which prevent sediment deposition indirectly through reducing fluvial sediment supply and directly through the construction of flood defence infrastructure on deltas, impeding floods which deliver sediment to the land. Additionally, anthropogenic activities increase the rate of subsidence through the extraction of groundwater and other land-use practices.&lt;/p&gt;&lt;p&gt;This research shows the potential for fluvial sediment delivery to compensate for sea-level rise and subsidence in the Mekong delta over the 21st century. We use detailed elevation data and subsidence scenarios in combination with regional sea-level rise and fluvial sediment flux projections to quantify the potential for maintaining elevation relative to sea level in the Mekong delta. We present four examples of localised sedimentation scenarios in specific areas, for which we quantified the potential effectiveness of fluvial sediment deposition for offsetting relative sea-level rise. The presented sediment-based adaptation strategies are complicated by existing land use, therefore a change in water and sediment management is required to effectively use natural resources and employ these adaptation methods. The presented approach could be an exemplar to assess sedimentation strategy feasibility in other delta systems worldwide that are under threat from sea-level rise.&lt;/p&gt;


The development of the area, of the Thames Estuary is briefly traced since the late Cretaceous period, with its present outline being due to a combination of factors. The overall subsidence of the North Sea area, the ‘Alpine5 fold movements, and the transgression of the sea since the retreat of the Weichselian icesheets have all contributed. The positions of the shore-line during the critical phase, 9600 b.p. to 8000 b.p., of this last transgression of the sea are shown. Subsequent to this main transgressive phase, erosion of the shoreline has been rapid due to storm-waves and tidal current action. An estimation of the average rate of subsidence and/or sea-level rise is given based on the concept of sedimentary equilibrium in which a figure of 12.7 cm (5 in) per century is arrived at.


Sign in / Sign up

Export Citation Format

Share Document