The geochemistry of the late Cambrian carbonate in North China: the Steptoean Positive Carbon Isotope Excursion (SPICE) record suppressed in a coastal condition?

2019 ◽  
Vol 156 (10) ◽  
pp. 1805-1819 ◽  
Author(s):  
Jing Huang ◽  
Yali Chen ◽  
Xuelei Chu ◽  
Tao Sun

AbstractThe Steptoean Positive Carbon Isotope Excursion (SPICE) is globally distributed in late Cambrian sedimentary records but controversially heterogeneous in its magnitudes. Here we use multiple geochemical proxies to investigate the late Cambrian carbonates from the Tangwangzhai section in North China, which were deposited in a shallow coastal environment with three depositional sequences (S1–S3). Each sequence comprises a transgressive systems tract (TST) and a highstand systems tract (HST). The REE + Y and trace element records are consistent with the depositional condition and indicate that terrigenous influence was more significant in the TST than HST. δ13Ccarb and δ34SCAS are low in the TST relative to HST, consistent with the scenario that terrigenous inputs were profoundly aggressive to seawater by introducing 13C-depleted and 34S-depleted materials. Within the TST of S2, the SPICE excursion shows a scaled-down δ13Ccarb positive shift (∼1.7 ‰) relative to its general records (∼4–6 ‰); the corresponding δ34SCAS show no positive excursion. This ‘atypical’ SPICE record is attributed to enhanced 13C-depleted and 34S-depleted terrigenous influence during the TST, which would reduce the amplitude of δ13Ccarb excursion, and even obscure δ34SCAS excursion. Meanwhile the subaerial unconformity at the base of TST would also cause a partially missing and a ‘snapshot’ preservation. Our study confirms significant local influence to the SPICE records, and further supports the heterogeneity and low sulphate concentrations of the late Cambrian seawater, because of which the SPICE records may be vulnerable to specific depositional conditions (e.g. sea-level, terrigenous input).

2000 ◽  
Vol 162 (3-4) ◽  
pp. 211-223 ◽  
Author(s):  
Matthew R. Saltzman ◽  
Robert L. Ripperdan ◽  
M.D. Brasier ◽  
Kyger C. Lohmann ◽  
Richard A. Robison ◽  
...  

2015 ◽  
Vol 11 (4) ◽  
pp. 669-685 ◽  
Author(s):  
C. Consolaro ◽  
T. L. Rasmussen ◽  
G. Panieri ◽  
J. Mienert ◽  
S. Bünz ◽  
...  

Abstract. We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (~ 80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dates reveal a detailed chronology for the last 14 ka BP. The δ 13C record measured on the benthonic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values termed carbon isotope excursion (CIE I and CIE II, respectively). The values were as low as −4.37‰ in CIE I, correlating with the Bølling–Allerød interstadials, and as low as −3.41‰ in CIE II, correlating with the early Holocene. In the Bølling–Allerød interstadials, the planktonic foraminifera also show negative values, probably indicating secondary methane-derived authigenic precipitation affecting the foraminiferal shells. After a cleaning procedure designed to remove authigenic carbonate coatings on benthonic foraminiferal tests from this event, the 13C values are still negative (as low as −2.75‰). The CIE I and CIE II occurred during periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic, suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.


2011 ◽  
Vol 168 (4) ◽  
pp. 851-862 ◽  
Author(s):  
Mark A. Woods ◽  
Philip R. Wilby ◽  
Melanie J. Leng ◽  
Adrian W.A. Rushton ◽  
Mark Williams

2016 ◽  
Vol 155 (4) ◽  
pp. 865-877 ◽  
Author(s):  
LUKE E. FAGGETTER ◽  
PAUL B. WIGNALL ◽  
SARA B. PRUSS ◽  
YADONG SUN ◽  
ROBERT J. RAINE ◽  
...  

AbstractGlobally, the Series 2 – Series 3 boundary of the Cambrian System coincides with a major carbon isotope excursion, sea-level changes and trilobite extinctions. Here we examine the sedimentology, sequence stratigraphy and carbon isotope record of this interval in the Cambrian strata (Durness Group) of NW Scotland. Carbonate carbon isotope data from the lower part of the Durness Group (Ghrudaidh Formation) show that the shallow-marine, Laurentian margin carbonates record two linked sea-level and carbon isotopic events. Whilst the carbon isotope excursions are not as pronounced as those expressed elsewhere, correlation with global records (Sauk I – Sauk II boundary andOlenellusbiostratigraphic constraint) identifies them as representing the local expression of the ROECE and DICE. The upper part of the ROECE is recorded in the basal Ghrudaidh Formation whilst the DICE is seen around 30m above the base of this unit. Both carbon isotope excursions co-occur with surfaces interpreted to record regressive–transgressive events that produced amalgamated sequence boundaries and ravinement/flooding surfaces overlain by conglomerates of reworked intraclasts. The ROECE has been linked with redlichiid and olenellid trilobite extinctions, but in NW Scotland,Olenellusis found after the negative peak of the carbon isotope excursion but before sequence boundary formation.


2011 ◽  
Vol 148 (4) ◽  
pp. 619-631 ◽  
Author(s):  
N. KAFOUSIA ◽  
V. KARAKITSIOS ◽  
H. C. JENKYNS ◽  
E. MATTIOLI

AbstractThe Early Toarcian (Early Jurassic, c. 183 Ma) was characterized by an Oceanic Anoxic Event (T-OAE), primarily identified by the presence of globally distributed approximately coeval black organic-rich shales. This event corresponded with relatively high marine temperatures, mass extinction, and both positive and negative carbon-isotope excursions. Because most studies of the T-OAE have taken place in northern European and Tethyan palaeogeographic domains, there is considerable controversy as to the regional or global character of this event. Here, we present the first high-resolution integrated chemostratigraphic (carbonate, organic carbon, δ13Ccarb, δ13Corg) and biostratigraphic (calcareous nannofossil) records from the Kastelli Pelites cropping out in the Pindos Zone, western Greece. During the Mesozoic, the Pindos Zone was a deep-sea ocean-margin basin, which formed in mid-Triassic times along the northeast passive margin of Apulia. In two sections through the Kastelli Pelites, the chemostratigraphic and biostratigraphic (nannofossil) signatures of the most organic-rich facies are identified as correlative with the Lower Toarcian, tenuicostatum/polymorphum–falciferum/serpentinum/levisoni ammonite zones, indicating that these sediments record the T-OAE. Both sections also display the characteristic negative carbon-isotope excursion in organic matter and carbonate. This occurrence reinforces the global significance of the Early Toarcian Oceanic Anoxic Event.


2020 ◽  
Vol 117 (48) ◽  
pp. 30171-30178
Author(s):  
Calum P. Fox ◽  
Xingqian Cui ◽  
Jessica H. Whiteside ◽  
Paul E. Olsen ◽  
Roger E. Summons ◽  
...  

The negative organic carbon isotope excursion (CIE) associated with the end-Triassic mass extinction (ETE) is conventionally interpreted as the result of a massive flux of isotopically light carbon from exogenous sources into the atmosphere (e.g., thermogenic methane and/or methane clathrate dissociation linked to the Central Atlantic Magmatic Province [CAMP]). Instead, we demonstrate that at its type locality in the Bristol Channel Basin (UK), the CIE was caused by a marine to nonmarine transition resulting from an abrupt relative sea level drop. Our biomarker and compound-specific carbon isotopic data show that the emergence of microbial mats, influenced by an influx of fresh to brackish water, provided isotopically light carbon to both organic and inorganic carbon pools in centimeter-scale water depths, leading to the negative CIE. Thus, the iconic CIE and the disappearance of marine biota at the type locality are the result of local environmental change and do not mark either the global extinction event or input of exogenous light carbon into the atmosphere. Instead, the main extinction phase occurs slightly later in marine strata, where it is coeval with terrestrial extinctions and ocean acidification driven by CAMP-induced increases inPco2; these effects should not be conflated with the CIE. An abrupt sea-level fall observed in the Central European basins reflects the tectonic consequences of the initial CAMP emplacement, with broad implications for all extinction events related to large igneous provinces.


Sign in / Sign up

Export Citation Format

Share Document