Experimental study on zeta potential and streaming potential of advanced ceramic powders

2002 ◽  
Vol 123 (2-3) ◽  
pp. 275-281 ◽  
Author(s):  
Rolf Wäsche ◽  
Makio Naito ◽  
Vincent A Hackley
TAPPI Journal ◽  
2016 ◽  
Vol 15 (5) ◽  
pp. 331-335 ◽  
Author(s):  
LEBO XU ◽  
JEREMY MYERS ◽  
PETER HART

Retention of cationic dispersed rosin size was studied via turbidity measurements on stock filtrate with different alum and dispersed rosin size dosages. Stock charge characteristics were analyzed using both an analysis of charge demand determined via a streaming current detector and an evaluation of zeta potential of the fibers by streaming potential measurement. The results indicated that an optimum amount of alum existed such that good sizing retention was maintained throughout a wide range of dispersed rosin size dosages. However, when an excessive amount of alum was used and fines and colloidal particles were transitioned from anionic to cationic, the cationic size retention was reduced. Laboratory results were confirmed with a paper machine trial. All data suggested that a stock charge study was necessary to identify optimal alum dosage for a cationic dispersed rosin sizing program.


2016 ◽  
Vol 16 (12) ◽  
pp. 2676-2686 ◽  
Author(s):  
Zhong-yi Li ◽  
Ren-kou Xu ◽  
Jiu-yu Li ◽  
Zhi-neng Hong

2012 ◽  
Vol 516-517 ◽  
pp. 1870-1873 ◽  
Author(s):  
Jun Wang ◽  
Heng Shan Hu

The electrokinetic effects are important in the understanding of electric properties in porous medium. In this study, the streaming potential and streaming current of saturated samples are measured at different concentrations, then three methods are applied to obtain the zeta-potential and electrokinetic coupling coefficient. The study shows that the results obtained from streaming potential and streaming current methods agree well with each other, but the results obtained from simplified streaming potential method become seriously inaccurate at low concentrations due to the influence of surface conductance. This experimental study also provides a reliable estimate of the surface conductivity and its contribution to zeta-potential at given concentrations.


2012 ◽  
Vol 11 (04) ◽  
pp. 1240021
Author(s):  
GUILLAUME LAFFITE ◽  
XU ZHENG ◽  
LOUIS RENAUD ◽  
FRANÇOIS BESSUEILLE ◽  
ELISABETH CHARLAIX ◽  
...  

We present an experimental study on the electrofluidic transistor in this paper. A novel and easy way to integrate the transistor into a microchannel is developed. The performances of the insulating layer, especially the leakage current under gate voltage, are carefully characterized. The change of surface charge on silica surface by gate polarization is measured, however, by measuring the streaming current, the gating effect on zeta potential has not been observed. This result should imply new assumption in the understanding of the charge regulation in the electrical double layer under gate polarization.


2011 ◽  
Vol 360 (1) ◽  
pp. 195-203 ◽  
Author(s):  
Maria Zaucha ◽  
Zbigniew Adamczyk ◽  
Jakub Barbasz

2020 ◽  
Vol 27 (2) ◽  
pp. 152-161 ◽  
Author(s):  
Xu-yu Zhang ◽  
Qian-shuai Wang ◽  
Zhong-xian Wu ◽  
Dong-ping Tao

1963 ◽  
Vol 18 (6) ◽  
pp. 1263-1264 ◽  
Author(s):  
R. E. Beck ◽  
V. Mirkovitch ◽  
P. G. Andrus ◽  
R. I. Leininger

A system was developed to measure the streaming potential generated between the ends of a capillary by the flow of a fluid through the capillary. Zeta potential can be calculated from the streaming potential. Adequate sensitivity and reproducibility were achieved by making special electrodes: silver wires plated in KCl solution and embedded in agar, careful electrical shielding, and provision for reversal of flow through the capillary to minimize electrode errors. The apparatus was developed to measure streaming potentials generated by either RingerS's solution or blood in contact with capillaries made of different materials such as quartz, polyethylene, etc. An example of a determination using a quartz capillary is presented. interfaces; blood; salt solutions; glass; quartz Submitted on February 25, 1963


2010 ◽  
Vol 81 (1) ◽  
pp. 015106 ◽  
Author(s):  
N. Guzelsu ◽  
C. Wienstien ◽  
S. P. Kotha

Sign in / Sign up

Export Citation Format

Share Document