Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites

2001 ◽  
Vol 33 (4-5) ◽  
pp. 475-481 ◽  
Author(s):  
F. Ekelund ◽  
R. Rønn ◽  
S. Christensen
mSystems ◽  
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Bin Ma ◽  
Zhongmin Dai ◽  
Haizhen Wang ◽  
Melissa Dsouza ◽  
Xingmei Liu ◽  
...  

ABSTRACT Understanding biogeographic patterns is a precursor to improving our knowledge of the function of microbiomes and to predicting ecosystem responses to environmental change. Using natural forest soil samples from 110 locations, this study is one of the largest attempts to comprehensively understand the different patterns of soil archaeal, bacterial, and fungal biogeography at the continental scale in eastern China. These patterns in natural forest sites could ascertain reliable soil microbial biogeographic patterns by eliminating anthropogenic influences. This information provides guidelines for monitoring the belowground ecosystem’s decline and restoration. Meanwhile, the deviations in the soil microbial communities from corresponding natural forest states indicate the extent of degradation of the soil ecosystem. Moreover, given the association between vegetation type and the microbial community, this information could be used to predict the long-term response of the underground ecosystem to the vegetation distribution caused by global climate change. The natural forest ecosystem in Eastern China, from tropical forest to boreal forest, has declined due to cropland development during the last 300 years, yet little is known about the historical biogeographic patterns and driving processes for the major domains of microorganisms along this continental-scale natural vegetation gradient. We predicted the biogeographic patterns of soil archaeal, bacterial, and fungal communities across 110 natural forest sites along a transect across four vegetation zones in Eastern China. The distance decay relationships demonstrated the distinct biogeographic patterns of archaeal, bacterial, and fungal communities. While historical processes mainly influenced bacterial community variations, spatially autocorrelated environmental variables mainly influenced the fungal community. Archaea did not display a distance decay pattern along the vegetation gradient. Bacterial community diversity and structure were correlated with the ratio of acid oxalate-soluble Fe to free Fe oxides (Feo/Fed ratio). Fungal community diversity and structure were influenced by dissolved organic carbon (DOC) and free aluminum (Ald), respectively. The role of these environmental variables was confirmed by the correlations between dominant operational taxonomic units (OTUs) and edaphic variables. However, most of the dominant OTUs were not correlated with the major driving variables for the entire communities. These results demonstrate that soil archaea, bacteria, and fungi have different biogeographic patterns and driving processes along this continental-scale natural vegetation gradient, implying different community assembly mechanisms and ecological functions for archaea, bacteria, and fungi in soil ecosystems. IMPORTANCE Understanding biogeographic patterns is a precursor to improving our knowledge of the function of microbiomes and to predicting ecosystem responses to environmental change. Using natural forest soil samples from 110 locations, this study is one of the largest attempts to comprehensively understand the different patterns of soil archaeal, bacterial, and fungal biogeography at the continental scale in eastern China. These patterns in natural forest sites could ascertain reliable soil microbial biogeographic patterns by eliminating anthropogenic influences. This information provides guidelines for monitoring the belowground ecosystem’s decline and restoration. Meanwhile, the deviations in the soil microbial communities from corresponding natural forest states indicate the extent of degradation of the soil ecosystem. Moreover, given the association between vegetation type and the microbial community, this information could be used to predict the long-term response of the underground ecosystem to the vegetation distribution caused by global climate change. Author Video: An author video summary of this article is available.


Pedobiologia ◽  
2014 ◽  
Vol 57 (3) ◽  
pp. 181-189 ◽  
Author(s):  
Nadine Herold ◽  
Ingo Schöning ◽  
Doreen Berner ◽  
Heike Haslwimmer ◽  
Ellen Kandeler ◽  
...  

Author(s):  
Chao-Lei Yuan ◽  
Li-Mei Zhang ◽  
Jun-Tao Wang ◽  
Wen-Kai Teng ◽  
Hang-Wei Hu ◽  
...  

2019 ◽  
Vol 326 (1) ◽  
pp. 131-136
Author(s):  
S.A. Burtseva ◽  
◽  
M.N. Byrsa ◽  
S.N. Maslobrod ◽  
◽  
...  

2015 ◽  
Vol 2 (2) ◽  
pp. 148-158
Author(s):  
Surianto

Spodosol soil of Typic Placorthod sub-group of East Barito District is one of the problem soils with the presence of hardpan layer, low fertility, low water holding capacity, acid reaction and it is not suitable for oil palm cultivation without any properly specific management of land preparation and implemented best agronomic practices. A study was carried out to evaluate the soil characteristic of a big hole (A profile) and no big hole (B profile) system and comparative oil palm productivity among two planting systems. This study was conducted in Spodosol soil at oil palm plantation (coordinate X = 0281843 and Y = 9764116), East Barito District, Central Kalimantan Province on February 2014, by surveying of placic and ortstein depth and observing soil texture and chemical properties of 2 (two) oil palm's soil profiles that have been planted in five years. Big hole system of commercial oil palm field planting on the Spodosol soil area was designed for the specific purpose of minimizing the potential of a negative effect of shallow effective planting depth for oil palms growing due to the hardpan layer (placic and ortstein) presence as deep as 0.25 - 0.50 m. The big hole system is a planting hole type which was vertical-sided with 2.00 m x 1.50 m on top and bottom side and 3.00 m depth meanwhile the 2:1 drain was vertical-sided also with 1.50 m depth and 300 m length. Oil palm production was recorded from the year 2012 up to 2014. Results indicated that the fractions both big hole profile (A profile) and no big hole profile (B profile) were dominated by sands ranged from 60% to 92% and the highest sands content of non-big hole soil profile were found in A and E horizons (92%). Better distribution of sand and clay fractions content in between layers of big hole soil profiles of A profile sample is more uniform compared to the B profile sample. The mechanical holing and material mixing of soil materials of A soil profile among the upper and lower horizons i.e. A, E, B and C horizons before planting that resulted a better distribution of both soil texture (sands and clay) and chemical properties such as acidity value (pH), C-organic, N, C/N ratio, CEC, P-available and Exchangeable Bases. Investigation showed that exchangeable cations (Ca, Mg, K), were very low in soil layers (A profile) and horizons (B profile) investigated. The low exchangeable cations due to highly leached of bases to the lower layers and horizons. Besides, the palm which was planted on the big hole system showed good adaptation and response positively by growing well of tertiary and quaternary roots that the roots were penetrable into deeper rooting zone as much as >1.00 m depth. The roots can grow well and penetrate much deeper in A profile compared to the undisturbed hardpan layer (B profile). The FFB (fresh fruit bunches) production of the non-big hole block was higher than the big hole block for the first three years of production. This might be due to the high variation of monthly rainfall in-between years of observation from 2009 to 2014. Therefore, the hardness of placic and ortstein as unpenetrable agents by roots and water to prevent water loss and retain the water in the rhizosphere especially in the drier weather. In the high rainfall condition, the 2:1 drain to prevent water saturation in the oil palm rhizosphere by moving some water into the drain. Meanwhile, the disturbed soil horizon (big hole area) was drier than un disturbance immediately due to water removal to deeper layers. We concluded that both big hole and 2:1 drain are a suitable technology for Spodosol soil land especially in preparing palms planting to minimize the negative effect of the hardpan layer for oil palm growth.


2012 ◽  
Vol 63 (4) ◽  
pp. 41-45 ◽  
Author(s):  
Iwona Makuch

Abstract In order to determine the influence of intensive horticulture on the amount of lead and its fraction contents, there were selected soil profiles from following objects to be researched: house gardens and allotment gardens from town areas and arable field on the outskirts of the town. It has not been determined that there is any influence of manner usage on total lead content as well as its distribution in soil profiles. The fractionation composition has created the following series: fraction IV > fraction III > fraction II > fraction I. The manner of usage has influenced the content and distribution the III fraction of lead connected with organic matter. Humus horizons of garden soils is characterized as the highest in its content.


2008 ◽  
Vol 9 (2) ◽  
pp. 117-122 ◽  
Author(s):  
James G. Archuleta ◽  
Eric S. Baxter

Sign in / Sign up

Export Citation Format

Share Document