The effects of acid nitrogen and acid sulphur deposition on CH4 oxidation in a forest soil: a laboratory study

2001 ◽  
Vol 33 (12-13) ◽  
pp. 1695-1702 ◽  
Author(s):  
M.A Bradford ◽  
P Ineson ◽  
P.A Wookey ◽  
H.M Lappin-Scott
Soil Research ◽  
2004 ◽  
Vol 42 (7) ◽  
pp. 767 ◽  
Author(s):  
Sally J. Price ◽  
Francis M. Kelliher ◽  
Robert R. Sherlock ◽  
Kevin R. Tate ◽  
Leo M. Condron

Tropospheric methane (CH4) is oxidised by soil microbes called methanotrophs. We examined them in soil samples from a pristine Nothofagus forest located in New Zealand. Laboratory incubations indicated the presence of high-affinity methanotrophs that displayed Michaelis–Menton kinetics (Km = 8.4 µL/L where Km is the substrate concentration at half the maximal rate). When the soil was dried from its field capacity water content of 0.34 to 0.16 m3/m3, CH4 oxidation rate increased nearly 7-fold. The methanotrophs were thus metabolically poised for very high activity, but substrate availability was commonly limiting. When water content was held constant, CH4 oxidation rate nearly doubled as temperature increased from 5 to 12°C, a range found in the forest. By contrast, CH4 oxidation rate did not change much from 12 to 30°C, and it was zero at 35°C. When water content and temperature were held constant, the optimal soil pH for CH4 oxidation was 4.4, as found in the forest. Soil disturbance by nitrogen (N) and non-N salt amendment decreased CH4 oxidation rate, but this depended on the amendment species and concentration. The methanotrophs were adapted to native conditions and exhibited a great sensitivity to disturbance.


2019 ◽  
Vol 366 (24) ◽  
Author(s):  
Nadine Praeg ◽  
Larissa Schwinghammer ◽  
Paul Illmer

ABSTRACT Due to the activity of methane-oxidizing bacteria, forest soils are usually net sinks for the greenhouse gas methane (CH4). Despite several hints that CH4 balances might be influenced by vegetation, there are only few investigations dealing with this connection. Therefore, we studied this soil–plant–microbe interaction by using mesocosm experiments with forest soil and Larix decidua, a common coniferous tree species within the Alps. Gas measurements showed that the presence of L. decidua significantly reduced CH4 oxidation of the forest soil by ∼10% (−0.95 µmol m−2 h−1 for soil vs −0.85 µmol m−2 h−1 for soil plus L. decidua) leading to an increased net CH4 balance. Increased light intensity was used to intensify the influence of the plant on the soil's CH4 balance. The increase in light intensity strengthened the effect of the plant and led to a greater reduction of CH4 oxidation. Besides, we examined the impact of L. decidua and light on the abundance of methanogens and methanotrophs in the rhizosphere as compared with bulk soil. The abundance of both methane-oxidizing bacteria and methanogenic archaea was significantly increased in the rhizosphere compared with bulk soil but no significant response of methanogens and methanotrophs upon light exposure was established.


2000 ◽  
Vol 11 (3) ◽  
pp. 203-206 ◽  
Author(s):  
Zhang Xiu-jun ◽  
Xu Hui ◽  
Chen Guan-xiong

2001 ◽  
Vol 33 (12-13) ◽  
pp. 1625-1631 ◽  
Author(s):  
M.A Bradford ◽  
P Ineson ◽  
P.A Wookey ◽  
H.M Lappin-Scott
Keyword(s):  

2008 ◽  
Vol 65 (2) ◽  
pp. 210-210 ◽  
Author(s):  
Athina A. Pappa ◽  
Nikolaos E. Tzamtzis ◽  
Sofia E. Koufopoulou

Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.


2008 ◽  
Vol 13 (4) ◽  
pp. 239-247 ◽  
Author(s):  
David De Cremer ◽  
Barbara C. Schouten

The present research examined the idea that the effectiveness of apologies on promoting fairness perceptions depends on how meaningful and sincere the apology is experienced. More precisely, it was predicted that apologies are more effective when they are communicated by an authority being respectful to others. A study using a cross-sectional organizational survey showed that an apology (relative to giving no apology) revealed higher fairness perceptions, but only so when the authority was respectful rather than disrespectful. In a subsequent experimental laboratory study the same interaction effect (as in Study 1) on fairness perceptions was found. In addition, a similar interaction effect also emerged on participants’ self-evaluations in terms of relational appreciation (i.e., feeling valued and likeable). Finally, these self-evaluations accounted (at least partly) for the interactive effect on fairness perceptions.


Sign in / Sign up

Export Citation Format

Share Document