Effects of soil moisture and temperature on CH4 oxidation and N2O emission of forest soil

2000 ◽  
Vol 11 (3) ◽  
pp. 203-206 ◽  
Author(s):  
Zhang Xiu-jun ◽  
Xu Hui ◽  
Chen Guan-xiong
2020 ◽  
Vol 3 (1) ◽  
pp. 58
Author(s):  
Rachele Venanzi ◽  
Loredana Barbona ◽  
Francesco Latterini ◽  
Rodolfo Picchio

The aim of this work was to assess the possible impacts on the forest soil and stand due to silvicultural treatment and forest operations in a beech high forest. Even aged beech forests (Fagus sylvatica L.) in the Municipality of Cappadocia (L’Aquila) and in the Municipality of Vallepietra (Roma) were analyzed. The analysis of the soil and stand were performed in order to assess the effects attributable to applied silviculture and forest logging. Two different logging methodologies (in particular for the extraction) were applied: mules were used in the areas with greater slopes and with obstacles, while for the areas with better accessibility, mechanical means were used, in this case tractors. In detail, the main objective was to assess the disturbance on the ground and on the stand, generated by the two different levels of mechanization. In addition, it was also interesting to understand the possible effect on the soil and specifically on the partial uncovering where part of the tree canopy was removed. Only through an accurate cross-analysis of the studied parameters and indices could the anthropogenic impacts on the soil and stand due to forest operations be highlighted according to the different logging methodologies applied. The main results showed that the disturbances caused to the soil and stand were essentially caused in the bunching and extraction operations. The importance of avoiding or limiting the continuous passage of vehicles and animals on forest soil clearly emerges, especially in conditions of high soil moisture. It is also important to use correct technologies that are adequate for the specific environmental characteristics and the work plan. Finally, it can be said that there was no difference in the disturbance caused by the two logging methods when compared. Substantial differences in terms of improvement can be defined when comparing the findings of this study with other research studies. This can be done by applying a different type of mechanization with a different logging system.


Geoderma ◽  
2022 ◽  
Vol 405 ◽  
pp. 115425
Author(s):  
Lei Liu ◽  
Marc Estiarte ◽  
Per Bengtson ◽  
Jian Li ◽  
Dolores Asensio ◽  
...  

2001 ◽  
Vol 33 (12-13) ◽  
pp. 1695-1702 ◽  
Author(s):  
M.A Bradford ◽  
P Ineson ◽  
P.A Wookey ◽  
H.M Lappin-Scott

Soil Research ◽  
2004 ◽  
Vol 42 (7) ◽  
pp. 767 ◽  
Author(s):  
Sally J. Price ◽  
Francis M. Kelliher ◽  
Robert R. Sherlock ◽  
Kevin R. Tate ◽  
Leo M. Condron

Tropospheric methane (CH4) is oxidised by soil microbes called methanotrophs. We examined them in soil samples from a pristine Nothofagus forest located in New Zealand. Laboratory incubations indicated the presence of high-affinity methanotrophs that displayed Michaelis–Menton kinetics (Km = 8.4 µL/L where Km is the substrate concentration at half the maximal rate). When the soil was dried from its field capacity water content of 0.34 to 0.16 m3/m3, CH4 oxidation rate increased nearly 7-fold. The methanotrophs were thus metabolically poised for very high activity, but substrate availability was commonly limiting. When water content was held constant, CH4 oxidation rate nearly doubled as temperature increased from 5 to 12°C, a range found in the forest. By contrast, CH4 oxidation rate did not change much from 12 to 30°C, and it was zero at 35°C. When water content and temperature were held constant, the optimal soil pH for CH4 oxidation was 4.4, as found in the forest. Soil disturbance by nitrogen (N) and non-N salt amendment decreased CH4 oxidation rate, but this depended on the amendment species and concentration. The methanotrophs were adapted to native conditions and exhibited a great sensitivity to disturbance.


2008 ◽  
Vol 46 (3) ◽  
pp. 727-735 ◽  
Author(s):  
M. Guglielmetti ◽  
M. Schwank ◽  
C. Matzler ◽  
C. Oberdorster ◽  
J. Vanderborght ◽  
...  

Author(s):  
Hanaa Ahmed ◽  
Kristen M. DeAngelis ◽  
Maureen A. Morrow

We report the draft genome sequence of Leifsonia poae strain BS71. This bacterium was isolated from a low soil moisture content model soil microcosm inoculated with forest soil that had been subject to chronic warming.


Eos ◽  
2018 ◽  
Vol 99 ◽  
Author(s):  
Liza Jenkins ◽  
Danielle Tanzer ◽  
Duncan McKinley

Monitoring Forest Soil Moisture for a Changing World; Ann Arbor, Michigan, 15–17 May 2018


2019 ◽  
Vol 366 (24) ◽  
Author(s):  
Nadine Praeg ◽  
Larissa Schwinghammer ◽  
Paul Illmer

ABSTRACT Due to the activity of methane-oxidizing bacteria, forest soils are usually net sinks for the greenhouse gas methane (CH4). Despite several hints that CH4 balances might be influenced by vegetation, there are only few investigations dealing with this connection. Therefore, we studied this soil–plant–microbe interaction by using mesocosm experiments with forest soil and Larix decidua, a common coniferous tree species within the Alps. Gas measurements showed that the presence of L. decidua significantly reduced CH4 oxidation of the forest soil by ∼10% (−0.95 µmol m−2 h−1 for soil vs −0.85 µmol m−2 h−1 for soil plus L. decidua) leading to an increased net CH4 balance. Increased light intensity was used to intensify the influence of the plant on the soil's CH4 balance. The increase in light intensity strengthened the effect of the plant and led to a greater reduction of CH4 oxidation. Besides, we examined the impact of L. decidua and light on the abundance of methanogens and methanotrophs in the rhizosphere as compared with bulk soil. The abundance of both methane-oxidizing bacteria and methanogenic archaea was significantly increased in the rhizosphere compared with bulk soil but no significant response of methanogens and methanotrophs upon light exposure was established.


2012 ◽  
Vol 49 (6) ◽  
pp. 715-721 ◽  
Author(s):  
T. Rütting ◽  
D. Huygens ◽  
P. Boeckx ◽  
J. Staelens ◽  
L. Klemedtsson

Sign in / Sign up

Export Citation Format

Share Document