The anisotropy of magnetic susceptibility in biotite, muscovite and chlorite single crystals

2003 ◽  
Vol 367 (1-2) ◽  
pp. 13-28 ◽  
Author(s):  
Fátima Martı́n-Hernández ◽  
Ann M Hirt
2020 ◽  
Author(s):  
Josef Jezek ◽  
Martin Chadima ◽  
Frantisek Hrouda

<p>As shown in the literature several times, the calculation of the anisotropy of magnetic susceptibility (AMS) of hematite single crystals using standard linear AMS theory reveals that the calculated minimum principal susceptibility is parallel to the crystallographic c-axis, but is negative, which is however not due to diamagnetism as evidenced by direct measurements of susceptibility along the principal directions.</p><p>Susceptibility of a few hematite single crystals from Minas Gerais, Brazil, was measured in 320 directions using a special 3D rotator and the measurements were processed through AMS calculation by means of standard linear theory and through constructing contour diagram in equal-area projection. In addition, the deviations of the measured directional susceptibilities from the directional susceptibilities calculated from the fitted AMS tensor were calculated. The crystals show extremely high anisotropy, the susceptibility measured along the basal plane is several hundred to several thousand times higher than that along the c-axis and the AMS ellipsoids are very oblate, nearly rotational. The contour diagrams show relatively simple patterns of directional susceptibilities, similar to those of the second-rank tensor. However, the calculated AMS ellipsoids are slightly more eccentric than is the surface connecting the directional susceptibility values. The present study is assessing whether, realizing that the susceptibility along the c-axis is about three orders lower than that along the basal plane and taking into account the directional distribution of the fitting errors, one can ascribe the existence of the negative minimum susceptibilities calculated through standard linear theory to imperfect techniques of second-rank tensor fitting rather than to complicated magnetization mechanisms.  </p>


2020 ◽  
Vol 224 (3) ◽  
pp. 1905-1917
Author(s):  
František Hrouda ◽  
Josef Ježek ◽  
Martin Chadima

SUMMARY As shown in the literature several times, the calculation of the anisotropy of magnetic susceptibility (AMS) of hematite single crystals using standard linear AMS theory reveals that the calculated minimum principal susceptibility is parallel to the crystallographic c-axis, but is negative, which is however not due to diamagnetism as evidenced by direct measurements of susceptibility along the principal directions. Susceptibility of a few hematite single crystals from Minas Gerais, Brazil, was measured in 320 directions using a special 3-D rotator and the measurements were processed through AMS calculation by means of standard linear theory and through constructing contour diagrams in equal-area projection. In addition, the susceptibility was in detail measured in three perpendicular planes approximately passing through the main crystallographic directions. The crystals show extremely high anisotropy, the susceptibility measured along the basal plane is several hundred times higher than that along the c-axis and the AMS ellipsoids are very oblate. The contour diagrams show relatively simple patterns of directional susceptibilities, similar to those of the second-rank tensor. Fitting tensor to measured hematite grains results in small but negative minimum principal susceptibility. Nevertheless, summation of many oriented grains filters out the non-tensorial parts of the grain susceptibility in multicrystal assemblages, the AMS of which is well represented by a tensor.


2014 ◽  
Vol 15 (7) ◽  
pp. 3051-3065 ◽  
Author(s):  
Andrea R. Biedermann ◽  
Thomas Pettke ◽  
Eric Reusser ◽  
Ann M. Hirt

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 378
Author(s):  
Li Zhao ◽  
Zhiwei Hu ◽  
Hanjie Guo ◽  
Christoph Geibel ◽  
Hong-Ji Lin ◽  
...  

We report on the synthesis and physical properties of cm-sized CoGeO3 single crystals grown in a high pressure mirror furnace at pressures of 80 bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly anisotropic magnetic properties that we attribute to the impact of strong single ion anisotropy appearing in this system with TN∼33.5 K. Furthermore, we observe effective magnetic moments that are exceeding the spin only values of the Co ions, which reveals the presence of sizable orbital moments in CoGeO3.


2012 ◽  
Vol 190 ◽  
pp. 97-100 ◽  
Author(s):  
V.V. Glushkov ◽  
A.V. Kuznetsov ◽  
I. Sannikov ◽  
A.V. Bogach ◽  
S.V. Demishev ◽  
...  

We report the magnetic properties of EuxCa1-xB6 single crystals (0.756x1) studied in the wide range of temperatures (1.8-300 K) and magnetic fields (up to 50 kOe). It was found that low field magnetic susceptibility χ (T) follows the Curie-Weiss law χ~(T-Θp)-1 at high temperatures for all the concentrations studied. The effective magnetic moment of the Eu2+ ion estimated from the data diminishes from the free ion value μeff7.93μB (μB - Bohr magneton) for x=1 to μeff7.3μB for x=0.756. A universal behavior of magnetic susceptibility χ~(T-Θ)-α (α=1.5) is detected close to the Curie temperature TC in the paramagnetic state at both metallic (x>xC~0.8) and dielectric (xC.


2002 ◽  
Vol 17 (11) ◽  
pp. 2960-2965 ◽  
Author(s):  
E. Arushanov ◽  
L. Ivanenko ◽  
D. Eckert ◽  
G. Behr ◽  
U. K. Rößler ◽  
...  

Results of magnetization and magnetic susceptibility measurements on undoped and Co-doped FeSi2.5 single crystals are presented. The temperature dependence of the magnetic susceptibility of the Co-doped sample in the range of 5–300 K can be explained by temperature-dependent contributions due to paramagnetic centers and the carriers excited thermally in the extrinsic conductivity region. The values of the paramagnetic Curie temperature and activation energy of the donor levels were estimated. It is also shown that the magnetic susceptibility of Co-doped samples cooled in zero external field and in a field are different. This resembles the properties of spin-glasses and indicates the presence of coupling between magnetic centers.


2021 ◽  
Author(s):  
Sandra B. Ramírez-García ◽  
Luis M. Alva-Valdivia

<p>Magnetite formation of serpentinized ultramafic rocks leads to variations in the magnetic properties of serpentinites; however, magnetite precipitation is still on debate.</p><p>In this work, we analyzed 60 cores of ultramafic rocks with a variety of serpentinization degrees. These rocks belong to the ultramafic-mafic San Juan de Otates complex in Guanajuato, Mexico. Geochemical studies have been previously conducted, enabling us to compare changes in the magnetic properties against the chemical variations generated by the serpentinization process. By studying the density and magnetic properties such as anisotropy of magnetic susceptibility, hysteresis curves as well as magnetic and temperature-dependent susceptibility and, we were able to identify the relationship between magnetic content and serpentinization degree, the predominant magnetic carrier, and to what extent the magnetite grain size depends on the serpentinization.  Variations in these parameters allowed us to better constrain the temperature at which serpentinization occurred, the generation of other Fe-rich phases such as Fe-brucite and/or Fe-rich serpentine as well as distinctive rock textures formed at different serpentinization degrees.</p>


1963 ◽  
Vol 68 (1) ◽  
pp. 279-291 ◽  
Author(s):  
S. Uyeda ◽  
M. D. Fuller ◽  
J. C. Belshé ◽  
R. W. Girdler

Sign in / Sign up

Export Citation Format

Share Document