1,25-Dihydroxyvitamin D3 reduces MHC antigen expression on pancreatic beta-cells in vitro

1997 ◽  
Vol 29 (4) ◽  
pp. 2156-2157 ◽  
Author(s):  
J.H. Hahn ◽  
B. Kuttler ◽  
C. Mathieu ◽  
R. Bouillon
2007 ◽  
Vol 115 (S 1) ◽  
Author(s):  
G Päth ◽  
A Opel ◽  
M Gehlen ◽  
V Rothhammer ◽  
X Niu ◽  
...  

2012 ◽  
Vol 23 (22) ◽  
pp. 4444-4455 ◽  
Author(s):  
Flora Brozzi ◽  
Sophie Lajus ◽  
Frederique Diraison ◽  
Shavanthi Rajatileka ◽  
Katy Hayward ◽  
...  

Myosin- and Rab-interacting protein (MyRIP), which belongs to the protein kinase A (PKA)–anchoring family, is implicated in hormone secretion. However, its mechanism of action is not fully elucidated. Here we investigate the role of MyRIP in myosin Va (MyoVa)-dependent secretory granule (SG) transport and secretion in pancreatic beta cells. These cells solely express the brain isoform of MyoVa (BR-MyoVa), which is a key motor protein in SG transport. In vitro pull-down, coimmunoprecipitation, and colocalization studies revealed that MyRIP does not interact with BR-MyoVa in glucose-stimulated pancreatic beta cells, suggesting that, contrary to previous notions, MyRIP does not link this motor protein to SGs. Glucose-stimulated insulin secretion is augmented by incretin hormones, which increase cAMP levels and leads to MyRIP phosphorylation, its interaction with BR-MyoVa, and phosphorylation of the BR-MyoVa receptor rabphilin-3A (Rph-3A). Rph-3A phosphorylation on Ser-234 was inhibited by small interfering RNA knockdown of MyRIP, which also reduced cAMP-mediated hormone secretion. Demonstrating the importance of this phosphorylation, nonphosphorylatable and phosphomimic Rph-3A mutants significantly altered hormone release when PKA was activated. These data suggest that MyRIP only forms a functional protein complex with BR-MyoVa on SGs when cAMP is elevated and under this condition facilitates phosphorylation of SG-associated proteins, which in turn can enhance secretion.


Blood ◽  
1990 ◽  
Vol 76 (1) ◽  
pp. 189-197 ◽  
Author(s):  
WF Rigby ◽  
M Waugh ◽  
RF Graziano

Abstract 1,25-Dihydroxyvitamin D3 (1,25(OH)2-D) has been shown to be a macrophage-derived cytokine, capable of regulating myeloid differentiation and T-cell activation in vitro. Therefore, we examined the effects of 1,25(OH)2-D on the monocyte phenotype and function of human peripheral blood monocytes as an index of its biologic role at an inflammatory site. 1,25(OH)2-D treatment consistently and specifically reduced HLA-DR and CD4 expression by monocytes, while CD14 and class I HLA antigen expression were unaffected. Expression of Fc gamma R I-III on monocytes was variably modulated by 1,25(OH)2-D treatment, but no differences in antibody-dependent cell cytotoxicity (ADCC) were observed, measured using either ADCC or anti-Fc gamma R-antibody expressing hybridomas. In contrast, the ability of monocytes to induce antigen-dependent T-cell proliferation was markedly reduced by 1,25(OH)2-D pretreatment for as little as 6 hours. Addition of interleukin-1 (IL-1), IL-6, or indomethacin did not restore antigen- dependent T-cell proliferation, suggesting that this observation was not secondary to changes in IL-1, IL-6, or PGE2 production induced by 1,25(OH)2-D. These data suggest that 1,25(OH)2-D treatment specifically modulates human monocyte phenotype and function, altering HLA-DR antigen expression and antigen presentation, while leaving lytic function intact. These findings may be relevant to the immunobiologic role of 1,25(OH)2-D.


Sign in / Sign up

Export Citation Format

Share Document