Resonant frequency method for the measurement and uncertainty analysis of acoustic and elastic properties

Ultrasonics ◽  
2000 ◽  
Vol 38 (1-8) ◽  
pp. 206-211 ◽  
Author(s):  
Shing Chen
2020 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Carlo Boursier Niutta

A new approach for the nondestructive determination of the elastic properties of composite laminates is presented. The approach represents an improvement of a recently published experimental methodology based on the Impulse Excitation Technique, which allows nondestructively assessing local elastic properties of composite laminates by isolating a region of interest through a proper clamping system. Different measures of the first resonant frequency are obtained by rotating the clamping system with respect to the material orientation. Here, in order to increase the robustness of the inverse problem, which determines the elastic properties from the measured resonant frequencies, information related to the modal shape is retained by considering the effect of an additional concentrated mass on the first resonant frequency. According to the modal shape and the position of the mass, different values of the first resonant frequency are obtained. Here, two positions of the additional mass, i.e., two values of the resonant frequency in addition to the unloaded frequency value, are considered for each material orientation. A Rayleigh–Ritz formulation based on higher order theory is adopted to compute the first resonant frequency of the clamped plate with concentrated mass. The elastic properties are finally determined through an optimization problem that minimizes the discrepancy on the frequency reference values. The proposed approach is validated on several materials taken from the literature. Finally, advantages and possible limitations are discussed.


2003 ◽  
Author(s):  
Danelle M. Tanner ◽  
Albert C. Owen, Jr. ◽  
Fredd Rodriguez

1988 ◽  
Vol 3 (3) ◽  
pp. 173-178 ◽  
Author(s):  
M. Lakie ◽  
E.G. Walsh ◽  
G.W. Wright

2011 ◽  
Vol 324 ◽  
pp. 277-281 ◽  
Author(s):  
Pierre Campistron ◽  
Julien Carlier ◽  
Nadine Saad ◽  
Jamin Gao ◽  
Malika Toubal ◽  
...  

The main goal of this work is to develop an ultrasonic high frequency method for characterization of thin layers. The development of high frequency acoustic transducers for longitudinal waves and shear waves on silicon has enabeled the characterization of thin films deposited on this substrate. Three types of transducers have been achieved : (i) single crystal LiNbOSubscript text3 Y+163° for shear waves generation, and (ii) Y+36° for longitudinal waves, bonded and thinned on silicon substrate to achieve ultrasonic transducers in the frequency range 300-600 MHz ; (iii) thin films ZnO transducers were realized due to sputtering technologies working in the frequency range 1 GHz- 2.5 GHz. Using an inversion method and a network analyser which provide the scattering S11 parameter of the transducer versus the frequency we deduce the elastic properties of films deposited on the wafer surface. Thanks to these transducers the acoustic properties of thin films such as SU-8 based nanocomposites (doped with TiO2 , SrTiO3 or W nanoparticles) will be presented. In order to achieve mechanical impedance matching between silicon and water we control the mass of the embedded particles which provide a way to adjust the elastic properties of the characterized material. In another application an Indium metallic layer have been characterized in the high frequency range. We also use this method to characterize dielectric permittivity of the ZnO transducers.


2015 ◽  
Vol 55 (5) ◽  
pp. 943-950 ◽  
Author(s):  
R.D. Verástegui-Flores ◽  
G. Di Emidio ◽  
A. Bezuijen ◽  
J. Vanwalleghem ◽  
M. Kersemans

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3593 ◽  
Author(s):  
Stachiv ◽  
Gan

Micro-/nanomechanical resonators are often used in material science to measure the elastic properties of ultrathin films or mass spectrometry to estimate the mass of various chemical and biological molecules. Measurements with these sensors utilize changes in the resonant frequency of the resonator exposed to an investigated quantity. Their sensitivities are, therefore, determined by the resonant frequency. The higher resonant frequency and, correspondingly, higher quality factor (Q-factor) yield higher sensitivity. In solution, the resonant frequency (Q-factor) decreases causing a significant lowering of the achievable sensitivity. Hence, the nanomechanical resonator-based sensors mainly operate in a vacuum. Identification by nanomechanical resonator also requires an additional reference measurement on the identical unloaded resonator making experiments, due to limiting achievable accuracies in current nanofabrication processes, yet challenging. In addition, the mass spectrometry by nanomechanical resonator can be routinely performed for light analytes (i.e., analyte is modelled as a point particle). For heavy analytes such as bacteria clumps neglecting their stiffness result in a significant underestimation of determined mass values. In this work, we demonstrate the extraordinary capability of hybrid shape memory alloy (SMA)-based nanomechanical resonators to i) notably tune the resonant frequencies and improve Q-factor of the resonator immersed in fluid, ii) determine the Young’s (shear) modulus of prepared ultrathin film only from frequency response of the resonator with sputtered film, and iii) perform heavy analyte mass spectrometry by monitoring shift in frequency of just a single vibrational mode. The procedures required to estimate the Young’s (shear) modulus of ultrathin film and the heavy analyte mass from observed changes in the resonant frequency caused by a phase transformation in SMA are developed and, afterward, validated using numerical simulations. The present results demonstrate the outstanding potential and capability of high frequency operating hybrid SMA-based nanomechanical resonators in sensing applications that can be rarely achieved by current nanomechanical resonator-based sensors.


Sign in / Sign up

Export Citation Format

Share Document