Phototactic behavior of Daphnia as a tool in the continuous monitoring of water quality: Experiments with a positively phototactic Daphnia magna clone

1999 ◽  
Vol 33 (2) ◽  
pp. 401-408 ◽  
Author(s):  
E Michels ◽  
M Leynen ◽  
C Cousyn ◽  
L De Meester ◽  
F Ollevier
Author(s):  
JOSEINA MOUTINHO TAVARES ◽  
Anderson Silva de Oliveira ◽  
Paulo Moutinho Andrade de Souza ◽  
Walter da Silva Junior

This work aims to evaluate the quality of drinking water in the communities of Baiacu, Sao Francisco do Conde, Santo Amaro and Cachoeira. It was verified that in some places of Santo Amaro and Sao Francisco do Conde, from the microbiological point of view, it is not appropriate for consumption, because it was found that the presence of total coliforms in 50% of the samples and that the chlorine content is below the values indicated by the standards in 75% of the analyzed samples. Thus, the consumption of contaminated water can cause diseases, so it is recommended cleaning of residential reservoirs, maintenance in pipes periodically, as well as the need for continuous monitoring of water quality and the intense participation of public agencies in these actions. Through these actions and the active participation of the population, one can preserve the environment and the lives of all those who transit in the communities of the Bay of All Saints


2021 ◽  
Author(s):  
Elias Dimitriou ◽  
Georgios Poulis ◽  
Anastasios Papadopoulos

<p>Good water quality status in rivers and lakes is vital for both human well-being and biodiversity conservation and requires efficient monitoring and restoration strategies. This is reflected in an increasing number of International and National legislations which enforce water resources management and monitoring at a basin scale.</p><p>For this purpose, state-of-the-art monitoring schemes have been developed by using low-cost, technologically advanced sensors and Internet of Things (IoT) infrastructure. Remote sensing offers also a good water monitoring alternative but is more appropriate for medium to large water bodies with less dynamic character in comparison to small scale, temporary rivers.</p><p>Recent technological advances in sensors technology, energy supply, telecommunication protocols and data handling, facilitate the use of automated monitoring stations, but still, deployment of extended networks with readily available data remains far from common practice. Installation and operational costs for the development of such monitoring networks are among the most commonly faced challenges.</p><p>The main aim of this effort is to present the development of a network of automatic monitoring stations that measure in near real time water level and physicochemical parameters in several Greek rivers. This infrastructure has been developed under the project “Open ELIoT” (Open Internet of Things infrastructure for online environmental services - https://www.openeliot.com/en/), which was funded by the Greek National Structural Funds. It includes a low cost and easy to produce hardware node, coupled with commercial sensors of industrial specifications, as well as an IoT data platform, elaborating and presenting data, based on open technologies.</p><p>During its initial operation phase, the system has been deployed in sites with different hydrological regimes and various pressures to water quality, including (a) an urban Mediterranean stream (Pikrodafni stream), and (b) the urban part of a continental river running through an agricultural area (Lithaios stream).</p><p>Preliminary data on the continuous monitoring of sites (a) and (b) are presented here, reflecting the differences in pressures to the respective water bodies. Pikrodafni stream which is located close to the center of Athens – Greece and receives a lot of pressure from urban waste, illustrates Dissolved Oxygen (DO) concentration with a heavily skewed distribution towards low values (mean value: 2.15 mg/l and median: 0.93 mg/l). On the contrary, in Lithaios stream, which is more affected by agricultural runoff, dissolved oxygen data approach a normal distribution (mean value: 6.93 mg/l and median: 7.03 mg/l). The 25<sup>th</sup> and 75<sup>th</sup> percentiles in Pikrodafni stream are: 0.1 mg/l and 3.47 mg/l respectively while in Lithaios stream are: 5.6 mg/l and 8.45 mg/l. The average water temperature is similar to both streams (18.8 oC in Pikrodafni and 16.2 oC in Lithaios). Therefore, the significant differences in DO concentrations between the two streams indicate the need for continuous monitoring of data that facilitates the identification of pressures and enables stakeholders to respond to pollution events in time.</p>


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3758
Author(s):  
Hsing-Cheng Yu ◽  
Ming-Yang Tsai ◽  
Yuan-Chih Tsai ◽  
Jhih-Jyun You ◽  
Chun-Lin Cheng ◽  
...  

Recently, environmental pollution resulting from industrial waste has been emerging in an endless stream. The industrial waste contains chemical materials, heavy metal ions, and other toxic materials. Once the industrial waste is discharged without standards, it might lead to water or environmental pollution. Hence, it has become more important to provide evidence-based water quality monitoring. The use of a multifunctional miniaturized water quality monitoring system (WQMS), that contains continuous monitoring, water quality monitoring, and wireless communication applications, simultaneously, is infrequent. Thus, electrodes integrated with polydimethylsiloxane flow channels were presented in this study to be a compound sensor, and the sensor can be adopted concurrently to measure temperature, pH, electrical conductivity, and copper ion concentration, whose sensitivities are determined as 0.0193 °C/mV, −0.0642 pH/mV, 1.1008 mS/V·cm (from 0 mS/cm to 2 mS/cm) and 1.1975 mS/V·cm (from 2 mS/cm to 5.07 mS/cm), and 0.0111 ppm/mV, respectively. A LoRa shield connected into the system could provide support as a node of long range wide area network (LoRaWAN) for wireless communication application. As mentioned above, the sensors, LoRa, and circuit have been integrated in this study to a continuous monitoring system, WQMS. The advantages of the multifunctional miniaturized WQMS are low cost, small size, easy maintenance, continuous sampling and long-term monitoring for many days. Every tested period is 180 min, and the measured rate is 5 times per 20 min. The feedback signals of the miniaturized WQMS and measured values of the instrument were obtained to compare the difference. In the measured results at three different place-to-place locations the errors of electrical conductivity are 0.051 mS/cm, 0.106 mS/cm, and 0.092 mS/cm, respectively. The errors of pH are 0.68, 0.87, and 0.56, respectively. The errors of temperature are 0.311 °C, 0.252 °C, and 0.304 °C, respectively. The errors of copper ion concentration are 0.051 ppm, 0.058 ppm, 0.050 ppm, respectively.


2009 ◽  
Vol 25 (10) ◽  
pp. 1304-1319 ◽  
Author(s):  
C. Soulsby ◽  
I. A. Malcolm ◽  
D. Tetzlaff ◽  
A. F. Youngson

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3039 ◽  
Author(s):  
David Gillett ◽  
Alan Marchiori

Turbidity describes the cloudiness, or clarity, of a liquid. It is a principal indicator of water quality, sensitive to any suspended solids present. Prior work has identified the lack of low-cost turbidity monitoring as a significant hurdle to overcome to improve water quality in many domains, especially in the developing world. Low-cost hand-held benchtop meters have been proposed. This work adapts and verifies the technology for continuous monitoring. Lab tests show the low-cost continuous monitor can achieve 1 nephelometric turbidity unit (NTU) accuracy in the range 0–100 NTU and costs approximately 64 USD in components to construct. This level of accuracy yields useful and actionable data about water quality and may be sufficient in certain applications where cost is a primary constraint. A 38-day continuous monitoring trial, including a step change in turbidity, showed promising results with a median error of 0.45 and 1.40 NTU for two different monitors. However, some noise was present in the readings resulting in a standard deviation of 1.90 and 6.55 NTU, respectively. The cause was primarily attributed to ambient light and bubbles in the piping. By controlling these noise sources, we believe the low-cost continuous turbidity monitor could be a useful tool in multiple domains.


Sign in / Sign up

Export Citation Format

Share Document