Dry sliding wear behavior of in situ Cu–TiB2 nanocomposites against medium carbon steel

Wear ◽  
2003 ◽  
Vol 255 (7-12) ◽  
pp. 832-835 ◽  
Author(s):  
J.P. Tu ◽  
W. Rong ◽  
S.Y. Guo ◽  
Y.Z. Yang
Wear ◽  
2011 ◽  
Vol 270 (5-6) ◽  
pp. 413-421 ◽  
Author(s):  
Shiv Kumar ◽  
Ashish Bhattacharyya ◽  
Dipak Kumar Mondal ◽  
Koushik Biswas ◽  
Joydeep Maity

2011 ◽  
Vol 415-417 ◽  
pp. 170-173
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Yi Chao Ding ◽  
Yi San Wang

A wear resistant TiC-Cr7C3/Fe surface composite was produced by cast technique and in-situ synthesis technique. The microstructure and dry-sliding wear behavior of the surface composite was investigated using scanning electron microscope(SEM), X-ray diffraction(XRD) and MM-200 wear test machine. The results show that the surface composite consists of TiC and Cr7C3as the reinforcing phase, α-Fe and γ-Fe as the matrix. The surface composite has excellent wear-resistance under dry-sliding wear test condition with heavy loads.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1618 ◽  
Author(s):  
Zhaohuan Song ◽  
Songhao Zhao ◽  
Tao Jiang ◽  
Junjie Sun ◽  
Yingjun Wang ◽  
...  

In this work, a multiphase microstructure consisting of nanobainte, martensite, undissolved spherical carbide, and retained blocky austenite has been prepared in an Al-alloyed high carbon steel. The effect of the amount of nanobainite on the dry sliding wear behavior of the steel is studied using a pin-on-disc tester with loads ranging from 25–75 N. The results show that, there is no significant differences in specific wear rate (SWR) for samples with various amounts of nanobainite when the normal load is 25 N. While, the SWR firstly decreases and then increases with increasing the amount of nanobainite, and the optimum wear resistance is obtained for samples with 60 vol.% nanobainite, when the applied load increases to 50 and 75 N. The improved wear resistance is attributed to the peak hardness increment resulted from the transformation of retained austenite to martensite, work hardening, along with amorphization and nanocrystallization of the worn surface. In addition, the highest toughness of the samples with 60 vol.% nanobainite is also proven to play a positive role in resisting sliding wear. EDS (energy dispersion spectrum) and XRD (X-ray diffraction) examinations reveal that the predominant failure mechanism is oxidative wear.


Wear ◽  
2011 ◽  
Vol 271 (5-6) ◽  
pp. 658-664 ◽  
Author(s):  
R.K. Gautam ◽  
S. Ray ◽  
Satish C. Sharma ◽  
S.C. Jain ◽  
R. Tyagi

2002 ◽  
Vol 11 (5) ◽  
pp. 509-515 ◽  
Author(s):  
P. Bala Srinivasan ◽  
C.V. Krishnakumar ◽  
N. Krishnaraj

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Roshita David ◽  
Rupa Dasgupta ◽  
B. K. Prasad

The in situ method of making zinc-aluminum composites wherein TiC has been introduced has been investigated in the present paper for its microstructural, physical, and dry sliding wear behavior and compared with the base alloy. In the present study, ZA-27 alloy reinforced with 5 and 10 vol % TiC was taken into consideration. The results indicate that the wear rate and coefficient of friction of composites were lower than that of base alloy. The material loss in terms of both wear volume loss and wear rate increases with increase in load and sliding distance, respectively, while coefficient of friction follows a reverse trend with increase in load. Better performance was obtained for 5% TiC reinforcement than with 10% probably due to agglomeration of particles resulting in nonuniform dispersion. Worn surfaces were analyzed by scanning electron microscopy (SEM) analysis.


Sign in / Sign up

Export Citation Format

Share Document