scholarly journals Effect of Nanobainite Content on the Dry Sliding Wear Behavior of an Al-Alloyed High Carbon Steel with Nanobainitic Microstructure

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1618 ◽  
Author(s):  
Zhaohuan Song ◽  
Songhao Zhao ◽  
Tao Jiang ◽  
Junjie Sun ◽  
Yingjun Wang ◽  
...  

In this work, a multiphase microstructure consisting of nanobainte, martensite, undissolved spherical carbide, and retained blocky austenite has been prepared in an Al-alloyed high carbon steel. The effect of the amount of nanobainite on the dry sliding wear behavior of the steel is studied using a pin-on-disc tester with loads ranging from 25–75 N. The results show that, there is no significant differences in specific wear rate (SWR) for samples with various amounts of nanobainite when the normal load is 25 N. While, the SWR firstly decreases and then increases with increasing the amount of nanobainite, and the optimum wear resistance is obtained for samples with 60 vol.% nanobainite, when the applied load increases to 50 and 75 N. The improved wear resistance is attributed to the peak hardness increment resulted from the transformation of retained austenite to martensite, work hardening, along with amorphization and nanocrystallization of the worn surface. In addition, the highest toughness of the samples with 60 vol.% nanobainite is also proven to play a positive role in resisting sliding wear. EDS (energy dispersion spectrum) and XRD (X-ray diffraction) examinations reveal that the predominant failure mechanism is oxidative wear.

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 296 ◽  
Author(s):  
Chao Sun ◽  
Nannan Lu ◽  
Huan Liu ◽  
Xiaojun Wang ◽  
Xiaoshi Hu ◽  
...  

In this study, the dry sliding wear behaviors of SiC particle reinforced AZ91D matrix composites fabricated by stirring casting method were systematically investigated. The SiC particles in as-cast composites exhibited typical necklace-type distribution, which caused the weak interface bonding between SiC particles and matrix in particle-segregated zones. During dry sliding at higher applied loads, SiC particles were easy to debond from the matrix, which accelerated the wear rates of the composites. While at the lower load of 10 N, the presence of SiC particles improved the wear resistance. Moreover, the necklace-type distribution became more evident with the decrease of particle sizes and the increase of SiC volume fractions. Larger particles had better interface bonding with the matrix, which could delay the transition of wear mechanism from oxidation to delamination. Therefore, composites reinforced by larger SiC particles exhibited higher wear resistance. Similarly, owing to more weak interfaces in the composites with high content of SiC particles, more severe delamination occurred and the wear resistance of the composites was impaired.


2015 ◽  
Vol 642 ◽  
pp. 55-59 ◽  
Author(s):  
Shueiwan Henry Juang ◽  
Liang Jing Fan ◽  
Hsu Shuo Chang

In this study, the multi-pass friction stir processing (MP-FSP) technique was performed on ADC6 aluminum alloy + 5 wt% fly ash composite (A5FC) castings to increase their surface area. The dry sliding wear behaviors of the ADC6 alloy, A5FCs, and MP-FSPed A5FCs were evaluated. Dry sliding wear tests were performed using a ring-on-washer machine at a constant rotation speed of 100 rpm for 60 min, and the normal load was 10, 20, 30, and 40 N. The results showed that the MP-FSPed A5FCs had the lowest wear rates in the load range from 10 to 40 N, and adhesive wear was the major wear mechanism in these tests. The increased wear resistance was mainly due to grain refinement and elimination of casting defects after subjecting the ash composite to MP-FSP. The microstructure of the MP-FSPed A5FCs reveals that the sizes of the added raw fly ash particles decreased from micro-to nanoscale levels, and the nanoscale fly ash was uniformly dispersed in the aluminum matrix.


Author(s):  
Akshay Shinde

Abstract: To improve the wear resistance of the hybrid powder coating, TiO2 nanoparticles was hot mixed to form a homogenous mixture with the powder in the range varying wt. dry sliding wear test conducted to determine the wear resistance. The experiments were design according to Taguchi L9 array to find the optimum nanoparticles content required to minimize the wear rate of the coating. ANOVA was used to determine the effect of the parameters on wear rate. It showed that reinforcement has the maximum contribution on the wear rate of the coating as compared to load and frequency. From the graph of means optimum parametric values was obtained at 2 % wt of reinforcement, 2 N load and 2 Hz frequency. The wear rate decrease with the increase in reinforcement. Keywords: Taguchi Method, Tribometer, Hybrid powder, TiO2, Wear Rate.


2013 ◽  
Vol 797 ◽  
pp. 725-730
Author(s):  
Xing Jian Gao ◽  
Qi Zhang ◽  
Dong Bin Wei ◽  
Si Hai Jiao ◽  
Zheng Yi Jiang

This investigation attempts to improve the wear resistance of low chromium white cast iron (LCCI) by thermomechanical treatment. The thermomechanical treatment of the brittle LCCI with crack-free was successfully carried out by bonding it with a ductile low carbon steel firstly. Afterwards the dry sliding wear behavior of as-cast (LCCI-A) and thermomechanically processed (LCCI-B) samples was studied using a pin-on-disc apparatus under different test conditions. The microstructural examination shows that the refined supercooled austenite and plenty of secondary carbides in LCCI-B replaced the original microstructure of martensite and retained austenite with network carbide in LCCI-A. This significant evolution is beneficial to form and stabilise the oxide layer on the substrate, which makes the oxidational wear rather than abrasive wear or delamination dominating the wear process so that the improvement of the wear resistance of LCCI was achieved by hot working.


2013 ◽  
Vol 750-752 ◽  
pp. 361-364 ◽  
Author(s):  
Jing Yang ◽  
Zhi Bin Wang ◽  
Hai Liang Zhang ◽  
Xiao Long Liang

A new low-alloy high-carbon steel was designed to obtain the carbide-free bainite under low-temperature austempering. The microstructure, wear resistance under dry sliding friction and the wear mechanism were comparatively studied between samples austempered and low-temperature tempered. Results show that the carbide-free bainitic microstructure composed of bainitic ferrite laths with mean thickness of 120 nm and retained austenite films can be achieved by austempering at 220 °C for 120 h in salt bath after austenitizing at 1000 °C. The wear resistance under dry sliding friction of austempered sample is 19% more than that of low-temperature tempered sample. The wear mechanism of the low-temperature austempered sample is determined as the adhesive wear.


2015 ◽  
Vol 788 ◽  
pp. 143-150
Author(s):  
Alexandra Gontarenko ◽  
Kai Möhwald ◽  
Todd Alexander Deißer ◽  
Hans Jurgen Maier

Thermal spraying is one of the most efficient methods to deposit hard wear resistant coatings. The coatings deposited by High-Velocity-Oxygen-Fuel spraying (HVOF) are characterized by high wear resistance and outstanding tribological characteristics. One of the most challenging tasks for tribologists is to develop surface treatments that allow for both operating the component without lubricants and at the same time minimize wear. WC-based cermets are a group of thermally sprayed coatings known to have high wear resistance under sliding friction conditions. An experimental study on the dry sliding wear behavior of WCCo HVOF-sprayed coating deposited onto a steel substrate is presented in the current paper. A pin-on-disc tribometer was used to carry out the wear tests.


2012 ◽  
Vol 433-440 ◽  
pp. 572-577
Author(s):  
Hua Chen ◽  
Hai Ying Sun ◽  
Zhan Kui Zhao ◽  
Zhi Long Chai

Fe-Ni-Mo-C-Cr system powder metallurgy in the as-sintered was investigated on pin-on-rolling wear tester for their dry sliding wear behavior. The morphology of worn surfaces and wear mechanism were analysed by SEM. Results show the hot-forging deformation quenching and tempered considerably decreased the porosity and improved wear resistance, and compare with quenching microstructure, tempered microstructure has high wear resistance and match of strength-toughness. Fe-2.0Ni-0.4Mo-0.5C-0.6Cr alloy presented best wear characteristics. SEM observations of the worn surface revealed microploughing and plastic deformation and crack were the basic dry sliding wear morphology,and oxidative wear and delamination wear are dominant wear mechanism.


Wear ◽  
2003 ◽  
Vol 255 (7-12) ◽  
pp. 832-835 ◽  
Author(s):  
J.P. Tu ◽  
W. Rong ◽  
S.Y. Guo ◽  
Y.Z. Yang

Sign in / Sign up

Export Citation Format

Share Document