An Image Intensifier Multichannel Analyser for Astronomical Spectroscopy

Author(s):  
S. Jeffers ◽  
W. Weller
Author(s):  
D. Caillard ◽  
J.L. Martin

The behaviour of the dislocation substructure during the steady stage regime of creep, as well as its contribution to the creep rate, are poorly known. In particular, the stability of the subboundaries has been questioned recently, on the basis of experimental observations |1||2| and theoretical estimates |1||3|. In situ deformation experiments in the high voltage electron microscope are well adapted to the direct observation of this behaviour. We report here recent results on dislocation and subboundary properties during stationary creep of an aluminium polycristal at 200°C.During a macroscopic creep test at 200°C, a cell substructure is developed with an average cell size of a few microns. Microsamples are cut out of these specimens |4| with the same tensile axis, and then further deformed in the microscope at the same temperature and stain rate. At 1 MeV, one or a few cells can be observed in the foil thickness |5|. Low electron fluxes and an image intensifier were used to reduce radiation damage effects.


Author(s):  
H. Koike ◽  
T. Matsuo ◽  
K. Ueno ◽  
M. Suzuki

Since the identification of single atoms was achieved by Crewe et al, scanning transmission microscopy has been put into pratical use. Recently they applied this method to the quantitative mass analysis of DNA.As pointed out previously the chromatic aberration which decreases the image contrast and quality, does not affect a scanning transmission image as it does a conventional transmission electron microscope image. Thus, the STEM method is advantageous for thick specimen. Further this method employs a high sensitive photomultiplier tube which also functions as an image intensifier. This detection method is effective for the observation of living specimens or easily damaged specimens. In this respect the scanning transmission microscope with high accelerating voltage is necessary.Since Uyeda's experiments of crystalline materials, many workers have been discussed how thick specimens can be observed by CTEM. With biological specimens, R. Szirmae reported on the decrease in the image contrast of rabbit psoas muscle sections at various accelerating voltages and specimen thicknesses.


Author(s):  
F. H. Louchet ◽  
L. P. Kubin

Experiments have been carried out on the 3 MeV electron microscope in Toulouse. The low temperature straining holder has been previously described Images given by an image intensifier are recorded on magnetic tape.The microtensile niobium samples are cut in a plane with the two operative slip directions [111] and lying in the foil plane. The tensile axis is near [011].Our results concern:- The transition temperature of niobium near 220 K: at this temperature and below an increasing difference appears between the mobilities of the screw and edge portions of dislocations loops. Source operation and interactions between screw dislocations of different slip system have been recorded.


Author(s):  
J. M. Cowley ◽  
R. Glaisher ◽  
J. A. Lin ◽  
H.-J. Ou

Some of the most important applications of STEM depend on the variety of imaging and diffraction made possible by the versatility of the detector system and the serial nature, of the image acquisition. A special detector system, previously described, has been added to our STEM instrument to allow us to take full advantage of this versatility. In this, the diffraction pattern in the detector plane may be formed on either of two phosphor screens, one with P47 (very fast) phosphor and the other with P20 (high efficiency) phosphor. The light from the phosphor is conveyed through a fiber-optic rod to an image intensifier and TV system and may be photographed, recorded on videotape, or stored digitally on a frame store. The P47 screen has a hole through it to allow electrons to enter a Gatan EELS spectrometer. Recently a modified SEM detector has been added so that high resolution (10Å) imaging with secondary electrons may be used in conjunction with other modes.


Author(s):  
Jan-Olle Malm ◽  
Jan-Olov Bovin

Understanding of catalytic processes requires detailed knowledge of the catalyst. As heterogeneous catalysis is a surface phenomena the understanding of the atomic surface structure of both the active material and the support material is of utmost importance. This work is a high resolution electron microscopy (HREM) study of different phases found in a used automobile catalytic converter.The high resolution micrographs were obtained with a JEM-4000EX working with a structural resolution better than 0.17 nm and equipped with a Gatan 622 TV-camera with an image intensifier. Some work (e.g. EDS-analysis and diffraction) was done with a JEM-2000FX equipped with a Link AN10000 EDX spectrometer. The catalytic converter in this study has been used under normal driving conditions for several years and has also been poisoned by using leaded fuel. To prepare the sample, parts of the monolith were crushed, dispersed in methanol and a drop of the dispersion was placed on the holey carbon grid.


Author(s):  
Jean-Claude Jésior ◽  
Roger Vuong ◽  
Henri Chanzy

Starch is arranged in a crystalline manner within its storage granules and should thus give sharp X-ray diagrams. Unfortunately most of the common starch granules have sizes between 1 and 100μm, making them too small for an X-ray study on individual grains. There is only one instance where an oriented X-ray diagram could be obtained on one sector of an individual giant starch granule. Despite their small size, starch granules are still too thick to be studied by electron diffraction with a transmission electron microscope. The only reported study on starch ultrastructure using electron diffraction on frozen hydrated material was made on small fragments. The present study has been realized on thin sectioned granules previously litnerized to improve the signal to noise ratio.Potato starch was hydrolyzed for 10 days in 2.2N HCl at 35°C, dialyzed against water until neutrality and embedded in Nanoplast. Sectioning was achieved with a commercially available low-angle “35°” diamond knife (Diatome) after a very carefull trimming and a pre-sectioning with a classical “45°” diamond knife. Sections obtained at a final sectioning angle of 42.2° (compared with the usual 55-60°) and at a nominal thickness of 900Å were collected on a Formvar-carbon coated grid. The exact location of the starch granules in their sections was recorded by optical microscopy on a Zeiss Universal polarizing microscope (Fig. 1a). After rehydration at a relative humidity of 95% for 24 hours they were mounted on a Philips cryoholder and quench frozen in liquid nitrogen before being inserted under frozen conditions in a Philips EM 400T electron microscope equipped with a Gatan anticontaminator and a Lhesa image intensifier.


Author(s):  
Jan-Olov Bovin ◽  
Osamu Terasaki ◽  
Jan-Olle Malm ◽  
Sven Lidin ◽  
Sten Andersson

High resolution transmission electron microscopy (HRTEM) is playing an important role in identifying the new icosahedral phases. The selected area diffraction patterns of quasi crystals, recorded with an aperture of the radius of many thousands of Ångströms, consist of dense arrays of well defined sharp spots with five fold dilatation symmetry which makes the interpretation of the diffraction process and the resulting images different from those invoked for usual crystals. The atomic structure of the quasi crystals is not established even if several models are proposed. The correct structure model must of course explain the electron diffraction patterns with 5-, 3- and 2-fold symmetry for the phases but it is also important that the HRTEM images of the alloys match the computer simulated images from the model. We have studied quasi crystals of the alloy Al65Cu20Fe15. The electron microscopes used to obtain high resolution electro micrographs and electron diffraction patterns (EDP) were a (S)TEM JEM-2000FX equipped with EDS and PEELS showing a structural resolution of 2.7 Å and a IVEM JEM-4000EX with a UHP40 high resolution pole piece operated at 400 kV and with a structural resolution of 1.6 Å. This microscope is used with a Gatan 622 TV system with an image intensifier, coupled to a YAG screen. It was found that the crystals of the quasi crystalline materials here investigated were more sensitive to beam damage using 400 kV as electron accelerating voltage than when using 200 kV. Low dose techniques were therefore applied to avoid damage of the structure.


1983 ◽  
Vol 12 (3) ◽  
pp. 122-127
Author(s):  
Mohendra Singh ◽  
D. B. Jadhav ◽  
S. C. Joshi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document