[30] An in vitro model for studying the contributions of the streptococcus mutans glucan-binding protein A to biofilm structure

Author(s):  
Jeffrey A. Banas ◽  
Karsten R.O. Hazlett ◽  
Joseph E. Mazurkiewicz
1998 ◽  
Vol 66 (5) ◽  
pp. 2180-2185 ◽  
Author(s):  
Karsten R. O. Hazlett ◽  
Suzanne M. Michalek ◽  
Jeffrey A. Banas

ABSTRACT Glucan-binding protein A (GbpA) of Streptococcus mutanshas been hypothesized to promote sucrose-dependent adherence and the cohesiveness of plaque and therefore to contribute to caries formation. We have analyzed the adherence properties and virulence of isogenicgbpA mutants relative to those of wild-type S. mutans. Contrary to expectations, the gbpA mutant strains displayed enhanced sucrose-dependent adherence in vitro and enhanced cariogenicity in vivo. In vitro, S. mutanswas grown in the presence of [3H]thymidine and sucrose within glass vials. When grown with constant rotation, significantly higher levels of gbpA mutant organisms than of wild type remained adherent to the vial walls. Postgrowth vortexing of rotated cultures significantly decreased adherence of wild-type organisms, whereas the adherence of gbpA mutant organisms was unaffected. In the gnotobiotic rat model, the gbpA mutant strain was hypercariogenic though the colonization levels were not significantly different from those of the wild type. ThegbpA mutant strain became enriched in vivo with organisms that had undergone a recombination involving the gtfB andgtfC genes. The incidence of gtfBC recombinant organisms increased as a function of dietary sucrose availability and was inversely correlated with caries development. We propose that the absence of GbpA elevates the cariogenic potential of S. mutans by altering the structure of plaque. However, the hypercariogenic plaque generated by gbpA mutant organisms may be suboptimal for S. mutans, leading to the accumulation of gtfBC recombinants whose reduced glucosyltransferase activity restores a less cariogenic plaque structure.


2009 ◽  
Vol 53 (10) ◽  
pp. 4377-4384 ◽  
Author(s):  
J. A. G. Ferreira ◽  
J. H. Carr ◽  
C. E. F. Starling ◽  
M. A. de Resende ◽  
R. M. Donlan

ABSTRACT Candida biofilms are microbial communities, embedded in a polymeric matrix, growing attached to a surface, and are highly recalcitrant to antimicrobial therapy. These biofilms exhibit enhanced resistance against most antifungal agents except echinocandins and lipid formulations of amphotericin B. In this study, biofilm formation by different Candida species, particularly Candida albicans, C. tropicalis, and C. parapsilosis, was evaluated, and the effect of caspofungin (CAS) was assessed using a clinically relevant in vitro model system. CAS displayed in vitro activity against C. albicans and C. tropicalis cells within biofilms. Biofilm formation was evaluated after 48 h of antifungal drug exposure, and the effects of CAS on preformed Candida species biofilms were visualized using scanning electron microscopy (SEM). Several species-specific differences in the cellular morphologies associated with biofilms were observed. Our results confirmed the presence of paradoxical growth (PG) in C. albicans and C. tropicalis biofilms in the presence of high CAS concentrations. These findings were also confirmed by SEM analysis and were associated with the metabolic activity obtained by biofilm susceptibility testing. Importantly, these results suggest that the presence of atypical, enlarged, conical cells could be associated with PG and with tolerant cells in Candida species biofilm populations. The clinical implications of these findings are still unknown.


Author(s):  
D. Bellovino ◽  
Y. Lanyau ◽  
I. Garaguso ◽  
L. Amicone ◽  
C. Cavallari ◽  
...  

Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


Sign in / Sign up

Export Citation Format

Share Document