[40] Experimental control of intracellular environment

Author(s):  
Peter F. Baker ◽  
Derek E. Knight
Author(s):  
Byunghee Hwang ◽  
Tae-Il Kim ◽  
Hyunjin Kim ◽  
Sungjin Jeon ◽  
Yongdoo Choi ◽  
...  

A ubiquinone-BODIPY photosensitizer self-assembles into nanoparticles (PS-Q-NPs) and undergoes selective activation within the highly reductive intracellular environment of tumors, resulting in “turn-on” fluorescence and photosensitizing activities.


2014 ◽  
Vol 2 ◽  
pp. 174-177
Author(s):  
Aline de Paula ◽  
Marcelo A. Savi ◽  
Vahid Vaziri ◽  
Marian Wiercigroch ◽  
Ekaterina Pavlovskaia

1972 ◽  
Vol 68 (2_Supplb) ◽  
pp. S9-S25 ◽  
Author(s):  
John Urquhart ◽  
Nancy Keller

ABSTRACT Two techniques for organ perfusion with blood are described which provide a basis for exploring metabolic or endocrine dynamics. The technique of in situ perfusion with autogenous arterial blood is suitable for glands or small organs which receive a small fraction of the animal's cardiac output; thus, test stimulatory or inhibitory substances can be added to the perfusing blood and undergo sufficient dilution in systemic blood after passage through the perfused organ so that recirculation does not compromise experimental control over test substance concentration in the perfusate. Experimental studies with the in situ perfused adrenal are described. The second technique, termed the pilot organ method, is suitable for organs which receive a large fraction of the cardiac output, such as the liver. Vascular connections are made between the circulation of an intact, anaesthetized large (> 30 kg) dog and the liver of a small (< 3 kg) dog. The small dog's liver (pilot liver) is excised and floated in a bath of canine ascites, and its venous effluent is continuously returned to the large dog. Test substances are infused into either the hepatic artery or portal vein of the pilot liver, but the small size of the pilot liver and its blood flow in relation to the large dog minimize recirculation effects. A number of functional parameters of the pilot liver are described.


2020 ◽  
Author(s):  
David Harris ◽  
Mark Wilson ◽  
Tim Holmes ◽  
Toby de Burgh ◽  
Samuel James Vine

Head-mounted eye tracking has been fundamental for developing an understanding of sporting expertise, as the way in which performers sample visual information from the environment is a major determinant of successful performance. There is, however, a long running tension between the desire to study realistic, in-situ gaze behaviour and the difficulties of acquiring accurate ocular measurements in dynamic and fast-moving sporting tasks. Here, we describe how immersive technologies, such as virtual reality, offer an increasingly compelling approach for conducting eye movement research in sport. The possibility of studying gaze behaviour in representative and realistic environments, but with high levels of experimental control, could enable significant strides forward for eye tracking in sport and improve understanding of how eye movements underpin sporting skills. By providing a rationale for virtual reality as an optimal environment for eye tracking research, as well as outlining practical considerations related to hardware, software and data analysis, we hope to guide researchers and practitioners in the use of this approach.


1989 ◽  
Vol 28 (1-2) ◽  
pp. 83-91 ◽  
Author(s):  
Tim S. Whittingham ◽  
Eduardo Warman ◽  
Hussein Assaf ◽  
Thomas J. Sick ◽  
Joseph C. LaManna

1998 ◽  
Vol 21 (2) ◽  
pp. 221-222
Author(s):  
Louis G. Tassinary

Chow (1996) offers a reconceptualization of statistical significance that is reasoned and comprehensive. Despite a somewhat rough presentation, his arguments are compelling and deserve to be taken seriously by the scientific community. It is argued that his characterization of literal replication, types of research, effect size, and experimental control are in need of revision.


2008 ◽  
Vol 07 (01) ◽  
pp. 151-155 ◽  
Author(s):  
AKIRA INOUE ◽  
MINGCONG DENG

A fault detection problem in a process control experimental system with unknown factors is presented in this paper. The fault detecting method is based on blind system identification approach. The experimental system actuator output includes unknown dynamics and unknown fault signal. By using the fault detecting method, the fault signal is detected. Simulation results for the experimental process are presented to show the effectiveness.


Sign in / Sign up

Export Citation Format

Share Document