Chapter 33 Organization of posture controls: an analysis of sensory and mechanical constraints

Author(s):  
L.M. Nashner ◽  
C.L. Shupert ◽  
F.B. Horak ◽  
F.O. Black
2017 ◽  
Vol 56 (2) ◽  
pp. 309-327 ◽  
Author(s):  
Kyung-Eun Shim ◽  
Blandine Bril

Due to cultural exchange between the West and Asia since the beginning of the 20th century, the Korean dance has integrated quite a few aspects of classical dance while transforming its figures. The transformation itself is what we are interested in. We focus on a central figure in classical ballet, la pirouette en dehors, which in the Korean dance is known as the Hanbaldeuleodolgi. Our research aims at understanding how is expressed in both cultures (France and Korea), a dance movement which comes under similar mechanical constraints (producing rotational forces) while displaying a unique aesthetic to each context. The detailed analysis of this figure is carried out based on the theory of Rudolf Laban.


2007 ◽  
Vol 21 (12) ◽  
pp. 2041-2047 ◽  
Author(s):  
Min Sue Kim ◽  
Sang Rak Kim ◽  
Seog Young Han ◽  
Byung Ju Yi

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Nian-kun Ji ◽  
Shu-ying Li ◽  
Zhi-tao Wang ◽  
Ning-bo Zhao

The intercooled gas turbine obtained by adopting an indirect heat exchanger into an existing gas turbine is one of the candidates for developing high-power marine power units. To simplify such a strong coupled nonlinear system reasonably, the feasibility and availability of qualifying equivalent effectiveness as the only parameter to evaluate the intercooler behavior are investigated. Regarding equivalent effectiveness as an additional degree of freedom, the steady state model of a marine intercooled gas turbine is developed and its off-design performance is analyzed. With comprehensive considerations given to various phase missions of ships, operational flexibility, mechanical constraints, and thermal constraints, the operating curve of the intercooled gas turbine is optimized based on graphical method in three-dimensional performance space. The resulting operating curve revealed that the control strategy at the steady state conditions for the intercooled gas turbine should be variable cycle control. The necessity of integration optimization design for gas turbine and intercooler is indicated and the modeling and analysis method developed in this paper should be beneficial to it.


Robotica ◽  
1996 ◽  
Vol 14 (3) ◽  
pp. 321-327 ◽  
Author(s):  
R.E. Ellis ◽  
O.M. Ismaeil ◽  
M.G. Lipsett

SUMMARYA haptic interface is a computer-controlled mechanism designed to detect motion of a human operator without impeding that motion, and to feed back forces from a teleoperated robot or virtual environment. Design of such a device is not trivial, because of the many conflicting constraints the designer must face.As part of our research into haptics, we have developed a prototype planar mechanism. It has low apparent mass and damping, high structural stiffness, high force bandwidth, high force dynamic range, and an absence of mechanical singularities within its workspace. We present an analysis of the human-operator and mechanical constraints that apply to any such device, and propose methods for the evaluation of haptic interfaces. Our evaluation criteria are derived from the original task analysis, and are a first step towards a replicable methodology for comparing the performance of different devices.


2000 ◽  
Author(s):  
Joseph M. Bauer ◽  
David J. Beebe

Abstract A technique for determining the three dimensional motions of hydrogel structures in microchannels is introduced. In developing this technique, we have adapted microscopic particle image velocimetry (μPIV), a method for measuring velocity fields in microfluidic devices. The motions of 1 μm fluorescent seed particles that are incorporated into a hydrogel microstructure (200 μm tall × 400 μm diameter) are tracked over several expansion cycles using microscopy. Combining measurements taken in different planes produces a three-dimensional representation of the motions present during volume changes can be reconstructed. By providing cross sections of the local deformation rates in hydrogel microstructures, this technique allows for the optimization of device designs as well as providing a better understanding of the processes by which hydrogels change volume under mechanical constraints.


2017 ◽  
Vol 9 (6) ◽  
Author(s):  
Toshihiro Nishimura ◽  
Yoshinori Fujihira ◽  
Tetsuyou Watanabe

This paper presents a novel fingertip system with a two-layer structure for robotic hands. The outer part of the structure consists of a rubber bag filled with fluid, called the “fluid fingertip,” while the inner part consists of a rigid link mechanism called a “microgripper.” The fingertip thus is a rigid/fluid hybrid system. The fluid fingertip is effective for grasping delicate objects, that is, it can decrease the impulsive force upon contact, and absorb uncertainties in object shapes and contact force. However, it can only apply a small grasping force such that holding a heavy object with a robotic hand with fluid fingertips is difficult. Additionally, contact uncertainties including inaccuracies in the contact position control cannot be avoided. In contrast, rigid fingertips can apply considerable grasping forces and thus grasp heavy objects effectively, although this makes delicate grasping difficult. To maintain the benefits of the fluid fingertip while overcoming its disadvantages, the present study examines passively operable microgripper-embedded fluid fingertips. Our goal is to use the gripper to enhance the positioning accuracy and increase the grasping force by adding geometrical constraints to the existing mechanical constraints. Grasping tests showed that the gripper with the developed fingertips can grasp a wide variety of objects, both fragile and heavy.


2006 ◽  
Vol 129 (6) ◽  
pp. 1035-1044 ◽  
Author(s):  
A. J. Birnbaum ◽  
P. Cheng ◽  
Y. L. Yao

Although considerable effort has gone into characterizing the laser forming process in terms of process parameters and conditions, there has been little emphasis on the effects of the mechanical and thermal constraints introduced by the clamping method utilized for a desired application. This research suggests means for investigating and predicting the resulting geometry of a specimen due to laser operation in close proximity to an array of imposed thermo-mechanical constraints for both the single and multiple scan cases; specifically, the resulting average bending angle as well as bending angle variations throughout the part. This is accomplished by initially only considering these effects on the thermal field. Conclusions are then drawn about the nature of the mechanical effects. These conclusions are validated through numerical simulation as well as physical experimentation. An analytical solution of the thermal problem is also presented for further validation of the temperature field as a constrained edge is approached.


Sign in / Sign up

Export Citation Format

Share Document