Design and evaluation of a high-performance haptic interface

Robotica ◽  
1996 ◽  
Vol 14 (3) ◽  
pp. 321-327 ◽  
Author(s):  
R.E. Ellis ◽  
O.M. Ismaeil ◽  
M.G. Lipsett

SUMMARYA haptic interface is a computer-controlled mechanism designed to detect motion of a human operator without impeding that motion, and to feed back forces from a teleoperated robot or virtual environment. Design of such a device is not trivial, because of the many conflicting constraints the designer must face.As part of our research into haptics, we have developed a prototype planar mechanism. It has low apparent mass and damping, high structural stiffness, high force bandwidth, high force dynamic range, and an absence of mechanical singularities within its workspace. We present an analysis of the human-operator and mechanical constraints that apply to any such device, and propose methods for the evaluation of haptic interfaces. Our evaluation criteria are derived from the original task analysis, and are a first step towards a replicable methodology for comparing the performance of different devices.

1998 ◽  
Vol 3 (3) ◽  
pp. 13-20 ◽  
Author(s):  
Robert L. Williams II

A cable-suspended haptic interface (CSHI) concept is presented. The goal is to create an input/output device to provide six-degree-of-freedom (dof) wrench (force and moment) feedback to a human operator in virtual reality or remote applications. Compared to commercially-available haptic interfaces for virtual reality applications, the present concept is driving for lighter, safer, crisper, more dexterous, and more economical operation. The CSHI concept is presented, along with the required mathematical transformations for use of the device.


2020 ◽  
Vol 16 ◽  
Author(s):  
Luxia Zheng ◽  
Xiong Shen ◽  
Yingchun Wang ◽  
Jian Liang ◽  
Mingming Xu ◽  
...  

Background: Phospholipids are widely used in food and pharmaceutical industry as functional excipients. In spite of the many analytical methods reported, there are very limited reports concerning systematic research and comparison of phospholipid excipients. Objective: To present a comprehensive evaluation of commercial natural phospholipid excipients (CNPEs). Methods: Seventeen batches of CNPEs from five manufacturing enterprises, isolated either from soybean or egg yolk, were investigated. The content and composition of phospholipids, fatty acids and sterols as a whole were considered as the evaluative index of CNPEs. Eight kinds of phospholipids were determined by supercritical fluid chromatography (SFC), twenty-one kinds of fatty acids were determined by gas chromatography (GC) after boron trifluoride-methanol derivatization, and nine kinds of sterols were determined by high performance liquid chromatography (HPLC) after separation and derivatization of the unsaponifiable matter. Cluster analysis was employed for classification and identification of the CNPEs. Results: The results showed that each kind of CNPEs had its characteristic content and composition of phospholipids, fatty acids and sterols. Seventeen batches of samples were divided into eight groups in cluster analysis. CNPEs of the same type from different source (soybean or egg yolk) or enterprises presented different content and composition of phospholipids, fatty acids and sterols. Conclusion: Each type of CNPEs had its characteristic content and composition of phospholipid, fatty acid and sterol. The compositions of phospholipid, fatty acid and sterol as a whole can be applied as an indicator of the quality and characteristics for CNPEs.


2020 ◽  
Vol 1 ◽  
pp. 2485-2494
Author(s):  
S. W. Eikevåg ◽  
A. Kvam ◽  
M. K. Bjølseth ◽  
J. F. Erichsen ◽  
M. Steinert

AbstractWhen designing high performance sports equipment for Paralympic athletes, there are many unknowns for the design engineer to consider. The design challenge is an optimisation task per individual athlete. However, modelling this optimisation is difficult due to the many variables. This article presents the design of an experiment for identifying and evaluating various seating positions in Paralympic rowing by using a rowing ergometer with a modified seat. Results indicate that changing seating position has a substantial impact on per-athlete rowing performance.


Author(s):  
Sergey Pisetskiy ◽  
Mehrdad Kermani

This paper presents an improved design, complete analysis, and prototype development of high torque-to-mass ratio Magneto-Rheological (MR) clutches. The proposed MR clutches are intended as the main actuation mechanism of a robotic manipulator with five degrees of freedom. Multiple steps to increase the toque-to-mass ratio of the clutch are evaluated and implemented in one design. First, we focus on the Hall sensors’ configuration. Our proposed MR clutches feature embedded Hall sensors for the indirect torque measurement. A new arrangement of the sensors with no effect on the magnetic reluctance of the clutch is presented. Second, we improve the magnetization of the MR clutch. We utilize a new hybrid design that features a combination of an electromagnetic coil and a permanent magnet for improved torque-to-mass ratio. Third, the gap size reduction in the hybrid MR clutch is introduced and the effect of such reduction on maximum torque and the dynamic range of MR clutch is investigated. Finally, the design for a pair of MR clutches with a shared magnetic core for antagonistic actuation of the robot joint is presented and experimentally validated. The details of each approach are discussed and the results of the finite element analysis are used to highlight the required engineering steps and to demonstrate the improvements achieved. Using the proposed design, several prototypes of the MR clutch with various torque capacities ranging from 15 to 200 N·m are developed, assembled, and tested. The experimental results demonstrate the performance of the proposed design and validate the accuracy of the analysis used for the development.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1455
Author(s):  
David T. Bird ◽  
Nuggehalli M. Ravindra

The US Department of Defense (DoD) realizes the many uses of additive manufacturing (AM) as it has become a common fabrication technique for an extensive range of engineering components in several industrial sectors. 3D Printed (3DP) sensor technology offers high-performance features as a way to track individual warfighters on the battlefield, offering protection from threats such as weaponized toxins, bacteria or virus, with real-time monitoring of physiological events, advanced diagnostics, and connected feedback. Maximum protection of the warfighter gives a distinct advantage over adversaries by providing an enhanced awareness of situational threats on the battle field. There is a need to further explore aspects of AM such as higher printing resolution and efficiency, with faster print times and higher performance, sensitivity and optimized fabrication to ensure that soldiers are more safe and lethal to win our nation’s wars and come home safely. A review and comparison of various 3DP techniques for sensor fabrication is presented.


2011 ◽  
Vol 383-390 ◽  
pp. 471-475
Author(s):  
Yong Bin Hong ◽  
Cheng Fa Xu ◽  
Mei Guo Gao ◽  
Li Zhi Zhao

A radar signal processing system characterizing high instantaneous dynamic range and low system latency is designed based on a specifically developed signal processing platform. Instantaneous dynamic range loss is a critical problem when digital signal processing is performed on fixed-point FPGAs. In this paper, the problem is well resolved by increasing the wordlength according to signal-to-noise ratio (SNR) gain of the algorithms through the data path. The distinctive software structure featuring parallel pipelined processing and “data flow drive” reduces the system latency to one coherent processing interval (CPI), which significantly improves the maximum tracking angular velocity of the monopulse tracking radar. Additionally, some important electronic counter-countermeasures (ECCM) are incorporated into this signal processing system.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3370 ◽  
Author(s):  
Saghi Forouhi ◽  
Rasoul Dehghani ◽  
Ebrahim Ghafar-Zadeh

This paper proposes a novel charge-based Complementary Metal Oxide Semiconductor (CMOS) capacitive sensor for life science applications. Charge-based capacitance measurement (CBCM) has significantly attracted the attention of researchers for the design and implementation of high-precision CMOS capacitive biosensors. A conventional core-CBCM capacitive sensor consists of a capacitance-to-voltage converter (CVC), followed by a voltage-to-digital converter. In spite of their high accuracy and low complexity, their input dynamic range (IDR) limits the advantages of core-CBCM capacitive sensors for most biological applications, including cellular monitoring. In this paper, after a brief review of core-CBCM capacitive sensors, we address this challenge by proposing a new current-mode core-CBCM design. In this design, we combine CBCM and current-controlled oscillator (CCO) structures to improve the IDR of the capacitive readout circuit. Using a 0.18 μm CMOS process, we demonstrate and discuss the Cadence simulation results to demonstrate the high performance of the proposed circuitry. Based on these results, the proposed circuit offers an IDR ranging from 873 aF to 70 fF with a resolution of about 10 aF. This CMOS capacitive sensor with such a wide IDR can be employed for monitoring cellular and molecular activities that are suitable for biological research and clinical purposes.


1999 ◽  
Vol 82 (6) ◽  
pp. 1308-1315 ◽  
Author(s):  
Francisco García Sánchez ◽  
Aurora Navas Díaz ◽  
Angeles García Pareja ◽  
Germán Cabrera Montiel

Abstract High-performance liquid chromatography using a combination of photometric, fluorimetric, and diode-laser polarimetric detectors in series for the determination of (+)-quinidine and (–)-quinine was investigated. An RP-8 reversed-phase column and methanol-water (80 + 20, v/v) with 0.2% triethylamine as mobile phase at a flow rate of 1 mL/min were used. A dynamic range of 0-200 μg for (+)-quinidine and (+)-quinine was established, with detection limits of 17.0 and 16.7 μg, respectively. An application of this method in spiked rabbit serum was developed.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
Shubham Shubham ◽  
Yoonho Seo ◽  
Vahid Naderyan ◽  
Xin Song ◽  
Anthony J. Frank Frank ◽  
...  

Audio applications such as mobile phones, hearing aids, true wireless stereo earphones, and Internet of Things devices demand small size, high performance, and reduced cost. Microelectromechanical system (MEMS) capacitive microphones fulfill these requirements with improved reliability and specifications related to sensitivity, signal-to-noise ratio (SNR), distortion, and dynamic range when compared to their electret condenser microphone counterparts. We present the design and modeling of a semiconstrained polysilicon diaphragm with flexible springs that are simply supported under bias voltage with a center and eight peripheral protrusions extending from the backplate. The flexible springs attached to the diaphragm reduce the residual film stress effect more effectively compared to constrained diaphragms. The center and peripheral protrusions from the backplate further increase the effective area, linearity, and sensitivity of the diaphragm when the diaphragm engages with these protrusions under an applied bias voltage. Finite element modeling approaches have been implemented to estimate deflection, compliance, and resonance. We report an 85% increase in the effective area of the diaphragm in this configuration with respect to a constrained diaphragm and a 48% increase with respect to a simply supported diaphragm without the center protrusion. Under the applied bias, the effective area further increases by an additional 15% as compared to the unbiased diaphragm effective area. A lumped element model has been also developed to predict the mechanical and electrical behavior of the microphone. With an applied bias, the microphone has a sensitivity of −38 dB (ref. 1 V/Pa at 1 kHz) and an SNR of 67 dBA measured in a 3.25 mm ´ 1.9 mm ´ 0.9 mm package including an analog ASIC.


Author(s):  
Maura C. Kibbey ◽  
David MacAllan ◽  
James W. Karaszkiewicz

IGEN's ORIGEN® technology, which is based on electrochemiluminescence, has been adopted by a number of research and bioanalytical laboratories who have recognized its exquisite sensitivity, high precision, wide dynamic range, and flexibility in formatting a wide variety of applications. IGEN's M-SERIES™ marks the introduction of the second generation of detection systems employing the ORIGEN technology specifically repackaged to address the needs of the high throughput laboratories involved in drug discovery. Assays are formatted without wash steps. Users realize the high performance of a heterogeneous technology with the convenience of a homogeneous format. The M-SERIES platform can address enzymatic assays (kinases, proteases, helicases, etc.), receptor-ligand or protein-protein assays, immunoassays, quantitation of nucleic acids, as well as other applications. Recent assay formats will be explored in detail.


Sign in / Sign up

Export Citation Format

Share Document