Chapter VII The Magnetic Threshold Curve of Superconductors

Author(s):  
B. Serin
Keyword(s):  
1961 ◽  
Vol 38 (3) ◽  
pp. 545-558 ◽  
Author(s):  
NOBUO SUGA ◽  
YASUJI KATSUKI

1. The impulses from the tympanic organ are transmitted at the prothoracic ganglion to a central neuron, the auditory T large fibre, which lies in the cord between the brain and the metathoracic ganglion. The impulses in the T large fibre are conducted rostrally and caudally with the same discharge pattern. Information is sent up to the brain, and down to the metathoracic ganglion, after a delay of about 12 msec. 2. The impulses from the cercal hair sensilla are transmitted to two similar auditory C large fibres which lie in the cord between the metathoracic and last (6th) abdominal ganglia and are then sent up to the mesothoracic ganglia by other auditory large fibres. 3. Central inhibitory interaction between the impulses from the tympanic nerves of the two sides are shown by a marked increase of impulses in the T large fibre following section of one of the tympanic nerves. No inhibitory interaction is found between the impulses from the two cercal nerves. 4. The auditory T large fibre receives not only the excitatory effect from the ipsilateral tympanic nerve at the prothoracic ganglion, but also the inhibitory and weak excitatory effects from the contralateral one. 5. The response range of the T large fibre is narrower than the threshold curve of the tympanic nerve and corresponds with one type of response range in the tympanic neurons. The response ranges of the C large fibres correspond closely with the threshold curve of the cercal nerve. 6. A large difference in threshold between the two T large fibres is found in the response to sound incident from the side. The number of impulses in the T large fibre nearer to the sound source is greater than in that farther from the source. 7. The difference in the number of impulses between the two T large fibres is most marked in the response to sound of the frequency which is dominant in stridulation. This difference is due to the mutual inhibitory interaction of neurons which modifies the number of impulses without changing the threshold of the tympanic large fibre. 8. It is suggested that the central inhibitory interaction increases the information about a sound source and plays an important role in the mechanism of the directional sense. 9. The stridulation of the group activates the tympanic nerve and evokes synchronized discharge in the T large fibre, but scarcely at all in the primary C large fibre. The tympanic organ and its neural network seem well adapted to reception of stridulation. 10. It is concluded that though neither of the two sound receptive organs--the tympanic organ and the cercal hair sensilla--can perform frequency analysis, the insect may be able to do so by making use of both organs, since they have different frequency ranges and are served by different auditory large-fibre tracts.


1976 ◽  
Vol 39 (5) ◽  
pp. 1117-1133 ◽  
Author(s):  
B. Oakley ◽  
D. G. Green

1. Double-barrel, potassium-specific microelectrodes have been used to measure light-induced transient changes in [K+]o in the frog eye cup preparation. These changes in [K+]o have been termed the potassioretinogram (KRG). 2. The KRG consists of two components: a rapid increase in [K+]o in the proximal retina and a slow decrease in [K+]o in the distal retina. 3. The KRG decrease has the rhodopsin action spectrum, is maximal in the photoreceptor layer, persists after aspartate treatment, and has an increment threshold curve which saturates at moderate background intensities. The rhodopsin rods are, therefore, most likely the only neurons which generate this ionic change, although the Muller (glial) cells may also be involved in this process. 4. The KRG decrease has the same time course as the c-wave of the electroretinogram for all variations in the stimulus parameters, including intensity, duration, and chromaticity. 5. It is suggested that the c-wave may be produced by the pigment epithelial cells as they hyperpolarize in response to the decrease in [K+]o around the photoreceptors.


1981 ◽  
Vol 51 (5) ◽  
pp. 1162-1168 ◽  
Author(s):  
H. Gautier ◽  
M. Bonora ◽  
J. H. Gaudy

In nine cats and nine human subjects anesthetized with alfaxalone, respiratory activity and tracheal pressure were recorded prior to and during occlusion of the airway at end inspiration or end expiration. Lung inflations at the end of expiration were also performed. In addition, the ventilatory pattern was analyzed during hypercapnia. The results show that occlusions at the end of inspiration or inflations provoked an apnea in both cats and humans. However, concomitant with increases in tidal volume during hypercapnia, inspiratory duration decreased in cats and did not change in human subjects. These results indicate that the Breuer-Hering reflex, which delays the onset of inspiration during inflation was equally operative in cats and humans. In contrast, the “Breuer-Hering threshold curve,” which accounts for the off-switch“ of inspiration was different in cats and humans. Thus, in summary, the Breuer-Hering inflation reflex is operative in human subjects, but it does not seem to be involved in the control of the inspiratory off-switch mechanism during increases respiratory activity resulting from hypercapnia.


2012 ◽  
Vol 24 (2) ◽  
pp. 297-313 ◽  
Author(s):  
ELIO ESPEJO ◽  
KARINA VILCHES ◽  
CARLOS CONCA

For the parabolic–elliptic Keller–Segel system in 2 it has been proved that if the initial mass is less than 8π/χ, a global solution exists, and in case the initial mass is larger than 8π/χ, blow-up happens. The case of several chemotactic species introduces an additional question: What is the analog for the critical mass obtained for the single species system? We find a threshold curve in the two species case that allows us to determine if the system is a blow-up or a global in time solution. No radial symmetry is assumed.


2012 ◽  
Vol 187 ◽  
pp. 153-156 ◽  
Author(s):  
T. Tanaka ◽  
M. Sato ◽  
M. Kobayashi ◽  
H. Shirakawa

A novel advanced spray technology, in which droplet size and velocity are accurately and tightly controlled, has been developed to realize the damage-free cleaning for next generation device manufacturing. The influence of droplet characteristics on pattern collapse/damage was quantitatively investigated using this technology. It was shown that the amount of damage was correlated to the droplet energy density on the wafer. The mechanism of pattern damage generated by the conventional dual fluid spray was revealed by the damage threshold curve, which was obtained from the theoretical consideration. Finally higher particle removal efficiency without any pattern damage was achieved by controlling the distribution of effective droplets for cleaning.


Sign in / Sign up

Export Citation Format

Share Document