SIMULTANEOUS OPTIMIZATION OF PIEZOELECTRIC ACTUATOR PLACEMENT AND FEEDBACK FOR VIBRATION SUPPRESSION

2002 ◽  
Vol 50 (6) ◽  
pp. 335-341 ◽  
Author(s):  
YONG LI ◽  
JUNJIRO ONODA ◽  
KENJI MINESUGI
Author(s):  
Wei Huang ◽  
Chongcong Tao ◽  
Hongli Ji ◽  
Jinhao Qiu

Acoustic Black Hole (ABH) plate structure has shown promising potentials of vibration suppression above a cut on frequency. For energy dissipation below the cut on frequency, however, the ABH is less effective due to the absence of wave focusing effect. This work reports a simultaneous optimization of ABH plates for broadband energy dissipation. Two sets of design variables of ABH plates, that is, geometry of the profile and topology of the damping layer, are optimized in an alternatively nested procedure. A novel objective function, namely the upper limit of kinetic energy, is proposed. Modeling of ABH structures is implemented and dynamic characteristic is solved using finite element method. A rectangular plate embedded with two ABH indentations is presented as a numerical example. Influence of frequency ranges in the calculation and mass ratios of the damping layer on results are discussed. The achieved optimal arrangement of the damping layer is found to cover equally, if not more, above the non-ABH (uniform) part of the plate than the ABH area. This is inconsistent with the conventional believe that damping layers should cover as much of the ABH area as possible. Mechanism of the broadband energy dissipation by the optimal solution is demonstrated.


2020 ◽  
Vol 20 (08) ◽  
pp. 2050095
Author(s):  
Yifan Lu ◽  
Qi Shao ◽  
Fei Yang ◽  
Honghao Yue ◽  
Rongqiang Liu

Different kinds of membrane structures have been proposed for future space exploration and earth observation. However, due to the low stiffness, high flexibility, and low damping properties, membrane structures are likely to generate large-amplitude (compared to the thickness) vibrations, which may lead to the degradation of their working performance. In this work, the governing equations are established at first, taking into account the modal control force induced by the polyvinylidene fluoride (PVDF) actuator. The optimal vibration control of the membrane structure is explored subsequently. A square PVDF actuator is attached on the membrane to achieve the vibration suppression. The influence of actuator position and control gains on the vibration control performance are studied. The optimal criteria for actuator placement and energy allocation are developed. Several case studies are numerically simulated to demonstrate the validity of the proposed optimization criteria. The analytical results in this study can serve as guidelines for optimal vibration control of membrane structures. Additionally, the proposed optimization criteria can be applied to active control of different flexible structures.


Author(s):  
Lin Cao ◽  
Wenjun (Chris) Zhang

This paper presents an integrated design approach, a new topology optimization technique, to simultaneously synthesizing the optimal structural topologies of compliant mechanisms (CMs) and actuator placement — bending actuators and rotary actuators — for motion generation. The approach has the following salient features: (1) the use of bending actuators and rotary actuators as the actuation of CMs, (2) the simultaneous optimization of the CM and the location and orientation of the actuator that is embedded in the CM, (3) the guiding of a flexible link from an initial configuration to a series of desired configurations (including precision positions, orientations, and shapes), and (4) a new connectivity checking scheme to check whether the regions of interest in a design candidate are well connected. A program was employed for the geometrically nonlinear finite element analysis of large-displacement CMs driven by either bending actuators or rotary actuators. Two design examples were presented to demonstrate the proposed approach. The design results were 3D printed, and they all achieved desired shape changes when actuated.


2013 ◽  
Vol 401-403 ◽  
pp. 175-179
Author(s):  
Xiang Yi Zhou ◽  
Jin Zhang

Optimal actuator placement is the key technology to be solved for active vibration suppression of large flexible space structure. According to the features of close mode and light damping, the optimal criterion derived from the controllability and observability of Grammian matrix is designed; Hybrid Particle Swarm Optimization (HPSO) algorithm is introduced to solve the problem in optimizing actuator placement, and the detail solving step is given. Compared with genetic algorithm (GA) in previous research, HPSO is better than GA in convergence rates and computing time. Based on the above optimal results, LQG/LTR control method is utilized when the large flexible structure under pulse and Gauss white noise excitation respectively. The numerical simulation results show that LQG/LTR, which has a better performance in suppressing structure vibration than LQG, can suppress the vibration of large flexible space structure and improve system robustness.


Author(s):  
Shuqing Yuan ◽  
Lihua Xie

Abstract Actuator placement is important to active vibration suppression. It is complex as it concerns many effects. In this paper, a new actuator position optimization criterion is proposed in which the effect of external excitations is considered. The criterion is applied in conjunction with the Independent Modal Space Control method. Effects of different modes are weighted to form a cost function according to their contributions to system dynamic responses, which directly reflect the effects of the external excitations. An example is given to validate the criterion.


1999 ◽  
Vol 121 (2) ◽  
pp. 237-243 ◽  
Author(s):  
Ye Zhu ◽  
Jinhao Qiu ◽  
Junji Tani ◽  
Yuta Urushiyama ◽  
Yasuharu Hontani

A method of simultaneous optimization of structure and control using mixed H2 and H∞ norms of the transfer function as the objective function is proposed and the modeling and formulation of simultaneous optimization problems associated with this approach are discussed in this paper. Simultaneous optimization is realized by iteratively executing structural optimization and controller optimization. Both serial and parallel approaches to combine structural optimization and controller optimization are investigated. They are applied to the simultaneous optimization of the cross-sectional parameters of a spring-supported beam and the parameters of the controller used to actively suppress the vibration of the beam. The performance of both displacement output and control input is improved significantly after simultaneous optimization. The simulation results show the great potential advantages of simultaneous optimization over traditional design methods and the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document