Integrated Design of Compliant Mechanisms and Embedded Rotary Actuators and Bending Actuators for Motion Generation

Author(s):  
Lin Cao ◽  
Wenjun (Chris) Zhang

This paper presents an integrated design approach, a new topology optimization technique, to simultaneously synthesizing the optimal structural topologies of compliant mechanisms (CMs) and actuator placement — bending actuators and rotary actuators — for motion generation. The approach has the following salient features: (1) the use of bending actuators and rotary actuators as the actuation of CMs, (2) the simultaneous optimization of the CM and the location and orientation of the actuator that is embedded in the CM, (3) the guiding of a flexible link from an initial configuration to a series of desired configurations (including precision positions, orientations, and shapes), and (4) a new connectivity checking scheme to check whether the regions of interest in a design candidate are well connected. A program was employed for the geometrically nonlinear finite element analysis of large-displacement CMs driven by either bending actuators or rotary actuators. Two design examples were presented to demonstrate the proposed approach. The design results were 3D printed, and they all achieved desired shape changes when actuated.

2013 ◽  
Vol 4 (2) ◽  
pp. 357-369 ◽  
Author(s):  
L. Cao ◽  
A. Dolovich ◽  
W. J. Zhang

Abstract. General problems associated with the design of compliant mechanisms through the topology optimization technique are defined in this paper due to the lack of comprehensive definitions for these problems in the literature. Standard design problems associated with rigid body mechanisms, i.e. function generation, path generation and motion generation, are extended to compliant mechanisms. Functional requirements and the associated 25 formulations in the literature are comprehensively reviewed along with their limitations. Based on whether the output is controlled quantitatively or not, these formulations are categorized into two types: (1) formulations for quantitative design; and (2) formulations for qualitative design. In addition, formulations that aim to solve the point flexure problem are also discussed. Future work is identified based on the discussion of each topic.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 881
Author(s):  
Adrian Dubicki ◽  
Izabela Zglobicka ◽  
Krzysztof J. Kurzydłowski

Numerous engineering applications require lightweight structures with excellent absorption capacity. The problem of obtaining such structures may be solved by nature and especially biological structures with such properties. The paper concerns an attempt to develop a new energy-absorbing material using a biomimetic approach. The lightweight structure investigated here is mimicking geometry of diatom shells, which are known to be optimized by nature in terms of the resistance to mechanical loading. The structures mimicking frustule of diatoms, retaining the similarity with the natural shell, were 3D printed and subjected to compression tests. As required, the bio-inspired structure deformed continuously with the increase in deformation force. Finite element analysis (FEA) was carried out to gain insight into the mechanism of damage of the samples mimicking diatoms shells. The experimental results showed a good agreement with the numerical results. The results are discussed in the context of further investigations which need to be conducted as well as possible applications in the energy absorbing structures.


Author(s):  
Adarsh Mavanthoor ◽  
Ashok Midha

Significant reduction in cost and time of bistable mechanism design can be achieved by understanding their bistable behavior. This paper presents bistable compliant mechanisms whose pseudo-rigid-body models (PRBM) are four-bar mechanisms with a torsional spring. Stable and unstable equilibrium positions are calculated for such four-bar mechanisms, defining their bistable behavior for all possible permutations of torsional spring locations. Finite Element Analysis (FEA) and simulation is used to illustrate the bistable behavior of a compliant mechanism with a straight compliant member, using stored energy plots. These results, along with the four-bar and the compliant mechanism information, can then be used to design a bistable compliant mechanism to meet specified requirements.


1999 ◽  
Vol 123 (4) ◽  
pp. 535-541 ◽  
Author(s):  
L. Saggere ◽  
S. Kota

Compliant four-bar mechanisms treated in previous works consisted of at least one rigid moving link, and such mechanisms synthesized for motion generation tasks have always comprised a rigid coupler link, bearing with the conventional definition of motion generation for rigid-link mechanisms. This paper introduces a new task called compliant-segment motion generation where the coupler is a flexible segment and requires a prescribed shape change along with a rigid-body motion. The paper presents a systematic procedure for synthesis of single-loop compliant mechanisms with no moving rigid-links for compliant-segment motion generation task. Such compliant mechanisms have potential applications in adaptive structures. The synthesis method presented involves an atypical inverse elastica problem that is not reported in the literature. This inverse problem is solved by extending the loop-closure equation used in the synthesis of rigid-links to the flexible segments, and then combining it with elastic equilibrium equation in an optimization scheme. The method is illustrated by a numerical example.


Author(s):  
Alireza Yazdanshenas ◽  
Emilli Morrison ◽  
Chung-Hyun Goh ◽  
Janet K. Allen ◽  
Farrokh Mistree

To save time and resources, many are making the transition to developing their ideas virtually. Computer-aided gear production realization is becoming more and more desired in the industry. To produce gears with custom qualities, such as material, weight and shape, the trial and error approach has yielded the best results. However, trial and error is costly and time consuming. The computer-aided integrated design and manufacturing approach is intended to resolve these drawbacks. A simple one stage reduction spur gearbox is used as an example in a case study. First, the gear geometry is developed using computer aided design (CAD) modeling. Next, using MATLAB/Simulink, the gear assembly is connected virtually to other subsystems for system expectations and interaction analysis. Finally, using finite element analysis (FEA) tools such as ABAQUS, a dynamic FEA of the gear integration is completed to analyze the stress concentrations and gear tooth failures. Through this method of virtual gear design, customized dimensions and specifications of gears for satisfying system-level requirements can be developed, thereby saving time and manufacturing costs for any custom gear design request.


1998 ◽  
Vol 41 (3) ◽  
pp. 476-484 ◽  
Author(s):  
Shinji NISHIWAKI ◽  
MIN Seungjae ◽  
Susumu EJIMA ◽  
Noboru KIKUCHI

Sign in / Sign up

Export Citation Format

Share Document