99/01981 Reaction of fuel NOx formation for gas turbine conditions

1999 ◽  
Vol 40 (3) ◽  
pp. 204
Keyword(s):  
1998 ◽  
Vol 120 (3) ◽  
pp. 474-480 ◽  
Author(s):  
T. Nakata ◽  
M. Sato ◽  
T. Hasegawa

Ammonia contained in coal-gasified fuel is converted to nitrogen oxides (NOx) in the combustion process of a gas turbine in integrated coal gasification combined cycle (IGCC) system. Research data on fuel-NOx formation are insufficient, and there still remains a wide explored domain. The present research aims at obtaining fundamental knowledge of fuel-NOx formation characteristics by applying reaction kinetics to gas turbine conditions. An instantaneous mixing condition was assumed in the cross section of a gas turbine combustor and both gradual mixing condition and instantaneous mixing condition were assumed at secondary air inlet section. The results may be summarized as follows: (1) in the primary combustion zone under fuel rich condition, HCN and other intermediate products are formed as ammonia contained in the fuel decomposes; (2) formation characteristics of fuel-NOx are affected by the condition of secondary air mixing; and (3) the conversion ratio from ammonia to NOx declines as the pressure inside the combustor rises under the condition of gradual mixing at the secondary air inlet. These results obtained agreed approximately with the experimentation.


2021 ◽  
Vol 35 (8) ◽  
pp. 6776-6784
Author(s):  
Truc Huu Nguyen ◽  
Jungkyu Park ◽  
Changhun Sin ◽  
Seungchai Jung ◽  
Shaun Kim

Author(s):  
Daniel Guyot ◽  
Thiemo Meeuwissen ◽  
Dieter Rebhan

Reducing gas turbine emissions and increasing their operational flexibility are key targets in today’s gas turbine market. In order to further reduce emissions and increase the operational flexibility of its GT24, Alstom has introduced an internally staged premix system into the GT24’s EV combustor. This system features a rich premix mode for GT start-up and a lean premix mode for GT loading and baseload operation. The fuel gas is injected through two premix stages, one injecting fuel into the burner air slots and one injecting fuel into the centre of the burner cone. Both premix stages are in continuous operation throughout the entire operating range, i.e. from ignition to baseload, thus eliminating the previously used pilot operation during start-up with its diffusion-type flame and high levels of NOx formation. The staged EV combustion concept is today a standard on the current GT26 and GT24. The EV burners of the GT26 are identical to the GT24 and fully retrofittable into existing GT24 engines. Furthermore, engines operating only on fuel gas (i.e. no fuel oil operation) no longer require a nitrogen purge and blocking air system so that this system can be disconnected from the GT. Only minor changes to the existing GT24 EV combustor and fuel distribution system are required. This paper presents validation results for the staged EV burner obtained in a single burner test rig at full engine pressure, and in a GT24 field engine, which had been upgraded with the staged EV burner technology in order to reduce emissions and extend the combustor’s operational behavior.


Author(s):  
Yonatan Cadavid ◽  
Andres Amell ◽  
Juan Alzate ◽  
Gerjan Bermejo ◽  
Gustavo A. Ebratt

The wet compressor (WC) has become a reliable way to reduce gas emissions and increase gas turbine efficiency. However, fuel source diversification in the short and medium terms presents a challenge for gas turbine operators to know how the WC will respond to changes in fuel composition. For this study, we assessed the operational data of two thermal power generators, with outputs of 610 MW and 300 MW, in Colombia. The purpose was to determine the maximum amount of water that can be added into a gas turbine with a WC system, as well as how the NOx/CO emissions vary due to changes in fuel composition. The combustion properties of different gaseous hydrocarbon mixtures at wet conditions did not vary significantly from each other—except for the laminar burning velocity. It was found that the fuel/air equivalence ratio in the turbine reduced with lower CH4 content in the fuel. Less water can be added to the turbine with leaner combustion; the water/fuel ratio was decreased over the range of 1.4–0.4 for the studied case. The limit is mainly due to a reduction in flame temperature and major risk of lean blowout (LBO) or dynamic instabilities. A hybrid reaction mechanism was created from GRI-MECH 3.0 and NGIII to model hydrocarbons up to C5 with NOx formation. The model was validated with experimental results published previously in literature. Finally, the effect of atmospheric water in the premixed combustion was analyzed and explained.


Author(s):  
Peter Therkelsen ◽  
Tavis Werts ◽  
Vincent McDonell ◽  
Scott Samuelsen

A commercially available natural gas fueled gas turbine engine was operated on hydrogen. Three sets of fuel injectors were developed to facilitate stable operation while generating differing levels of fuel/air premixing. One set was designed to produce near uniform mixing while the others have differing degrees of non-uniformity. The emissions performance of the engine over its full range of loads is characterized for each of the injector sets. In addition, the performance is also assessed for the set with near uniform mixing as operated on natural gas. The results show that improved mixing and lower equivalence ratio decreases NO emission levels as expected. However, even with nearly perfect premixing, it is found that the engine, when operated on hydrogen, produces a higher amount of NO than when operated with natural gas. Much of this attributed to the higher equivalence ratios that the engine operates on when firing hydrogen. However, even at the lowest equivalence ratios run at low power conditions, higher NO was observed. Analysis of the potential NO formation effects of residence time, kinetic pathways of NO production via NNH, and the kinetics of the dilute combustion strategy used are evaluated. While no one mechanism appears to explain the reasons for the higher NO, it is concluded that each may be contributing to the higher NO emissions observed with hydrogen. In the present configuration with the commercial control system operating normally, it is evident that system level effects are also contributing to the observed NO emission differences between hydrogen and natural gas.


2011 ◽  
Vol 77 (778) ◽  
pp. 1397-1409
Author(s):  
Yukihiko OKUMURA ◽  
Jingwei ZHANG ◽  
Eric G. EDDINGS ◽  
Jost O.L. WENDT

Sign in / Sign up

Export Citation Format

Share Document