In-vivo dominant immune responses in aplastic anaemia: molecular tracking of putatively pathogenetic T-cell clones by TCR β-CDR3 sequencing

The Lancet ◽  
2004 ◽  
Vol 364 (9431) ◽  
pp. 355-364 ◽  
Author(s):  
Antonio M Risitano ◽  
Jaroslaw P Maciejewski ◽  
Spencer Green ◽  
Magdalena Plasilova ◽  
Weihua Zeng ◽  
...  
2005 ◽  
Vol 115 (3) ◽  
pp. 313-322 ◽  
Author(s):  
L AUSUBEL ◽  
K OCONNOR ◽  
C BAECHERALLEN ◽  
C TROLLMO ◽  
B KESSLER ◽  
...  

Blood ◽  
1995 ◽  
Vol 86 (4) ◽  
pp. 1487-1492 ◽  
Author(s):  
B Hertenstein ◽  
B Wagner ◽  
D Bunjes ◽  
C Duncker ◽  
A Raghavachar ◽  
...  

CD52 is a phosphatidylinositolglycan (PIG)-anchored glycoprotein (PIG- AP) expressed on normal T and B lymphocytes, monocytes, and the majority of B-cell non-Hodgkin lymphomas. We observed the emergence of CD52- T cells in 3 patients after intravenous treatment with the humanized anti-CD52 monoclonal antibody Campath-1H for refractory B- cell lymphoma and could identify the underlaying mechanism. In addition to the absence of CD52, the PIG-AP CD48 and CD59 were not detectable on the CD52- T cells in 2 patients. PIG-AP-deficient T-cell clones from both patients were established. Analysis of the mRNA of the PIG-A gene showed an abnormal size in the T-cell clones from 1 of these patients, suggesting that a mutation in the PIG-A gene was the cause of the expression defect of PIG-AP. An escape from an immune attack directed against PIG-AP+ hematopoiesis has been hypothesized as the cause of the occurrence of PIG-AP-deficient cells in paroxysmal nocturnal hemoglobinuria (PNH) and aplastic anemia. Our results support the hypothesis that an attack against the PIG-AP CD52 might lead to the expansion of a PIG-anchor-deficient cell population with the phenotypic and molecular characteristics of PNH cells.


2015 ◽  
Vol 1 ◽  
pp. 6
Author(s):  
M.F. Kearney ◽  
J. Spindler ◽  
M. Sobolewski ◽  
J.M. Coffin ◽  
J.W. Mellors

1990 ◽  
Vol 2 (4) ◽  
pp. 323-328 ◽  
Author(s):  
Patricia M. Taylor ◽  
Fernando Esquivel ◽  
Brigitte A. Askonas

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 770-770
Author(s):  
Carolina Berger ◽  
Michael Jensen ◽  
Stanley R. Riddell

Abstract In principle, the adoptive transfer of T cell clones specific for antigens expressed by pathogens or malignant cells could be therapeutically effective and allow precise control of the specificity, function, and magnitude of T cell immunity. However, the infusion of large numbers of cultured T cells or T cell clones in clinical trials has frequently failed to eradicate tumors or provide long-term control of infection. This may be due in part to the acquisition of an effector phenotype by the T cells during in vitro culture, which reduces their ability to survive in vivo and establish an immune response of sufficient magnitude for sustained efficacy. Several approaches including the administration of cytokines such as IL15, or lymphodepletion prior to cell transfer might promote the establishment of T cell memory after T cell transfer. To facilitate the rational development of clinical trials of T cell therapy, we have employed a nonhuman primate model of adoptive T cell transfer in which culture conditions and cell doses identical to those in human studies are utilized, and designed strategies to permit rigorous analysis of the persistence, function, phenotype, and migration of transferred cells. CD8+ CTL specific for macaque CMV were detected using an overlapping peptide panel and cytokine flow cytometry, isolated as individual T cell clones by limiting dilution, and propagated to large numbers in vitro. The T cell clones were transduced to express an intracellular truncated CD19 (ΔCD19) surface marker to allow tracking and functional assessment of T cells in vivo, and enriched by immunomagnetic selection to high purity (>98%) prior to transfer. The persistence of transferred ΔCD19+ T cells in the blood and their migration to the bone marrow and lymph nodes was determined by flow cytometry after staining with anti CD19, CD8, and CD3 antibodies. The infusion of ΔCD19+CD8+ CTL (3 x 108/kg) was safe and the cells remained detectable in vivo for >5 months. ΔCD19+CD8+ T cells were easily detected in the blood 1 day after transfer at a level of 2.7% of CD8+ T cells and gradually declined over 56 days to a stable population of 0.15–0.2% of CD8+ T cells. At the time of transfer the ΔCD19+CD8+ T cells had an effector phenotype (CD62L− CD127−), but gradually converted to a CD62L+CD127+ memory phenotype in vivo. The infused T cells were found at high levels in lymph node and bone marrow at day 14 after transfer (1.4% and 2.5%, respectively) and the cells at these sites were predominantly CD62L+. The ΔCD19+CD62L+ T cells lacked direct lytic function and expressed low levels of granzyme B, consistent with memory T cells. Sorting of these cells from post-transfer PBMC showed that in vitro activation restored lytic activity. The transferred ΔCD19+CD62L+ T cells in post-infusion PBMC produced IFNγ and TNFα comparable to endogenous CMV-specific CD8+ CTL. These results demonstrate that a subset (5–10%) of transferred CD8+ CTL clones can persist long-term as functional memory T cells. The macaque CD8+ T cell clones are responsive to IL15 in vitro and a safe regimen for administering IL15 to macaques that boosts endogenous T cells has been identified. Studies are now in progress to determine if IL15 can enhance the efficiency with which effector and memory CD8+ T cell responses can be augmented after adoptive transfer of T cell clones.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3395-3395
Author(s):  
Daniel Sze ◽  
Tetsuo Yamagishi ◽  
Warren Kaplan ◽  
Ross D. Brown ◽  
Phoebe Joy Ho ◽  
...  

Abstract Previous studies have suggested that expanded T-cell clones are found in the blood of 59% of patients with multiple myeloma. These expanded T-cell clones are associated with prolonged overall survival and thus it has been suggested that they may have anti-tumor activity. We have previously reported similar T-cell clones exist in the peripheral blood of patients with Waldenstrom’s Macroglobulinemia (WM) by using flow cytometry to determine the T cell receptor (TCR) Vβ repertoire. Expanded T-cell clones were detected in 9 of 15 (60%) patient samples. Of the nine patients with TCR Vβ clones, four patients had multiple clones. The TCR Vβ clones were not identical, representing a variety of families across the TCR Vβ repertoire. We have previously found that while the TCRVβ+CD8+CD57 negative subset represents polyclonal populations, the CD57 positive subset represents either monoclonal or biclonal populations. By comparing the genetic profiling of these two subsets from a statistically significant gene list, two genes have been found to be highly upregulated in the CD57 negative polyclonal subset. These two genes are i.) SESN3, a member in the Sorting Nexin (SNX) protein family which is implicated in regulating membrane traffic capable of interaction with phosphatidylinositol-3-phosphate (10.4 fold, p=0.0241); ii.) Epstein-Barr virus induced gene 2 (lymphocyte-specific G protein-coupled receptor) EBI2 (7.4 fold, p=0.0207): This finding is in contrast to previous report that EBI2 is expressed in B-lymphocyte cell lines and in lymphoid tissues but not in T-lymphocyte cell lines or peripheral blood T lymphocytes. For the CD57 positive clonal T cell expansions, consistent with our previous reports, CD28 expression was found to be down regulated by 2.6 fold. There are two genes found to be highly upregulated. They are i.) Granzyme B (4.3 fold, p=0.0337) also called Cytotoxic T-lymphocyte proteinase 2. This enzyme is necessary for target cell lysis in cell-mediated immune responses through caspase-dependent apoptosis; ii.) Granzyme H, also called Cytotoxic T-lymphocyte proteinase and probably necessary for target cell lysis in cell-mediated immune responses. In summary, we have shown that CD57 positive clonal T cell populations exist in some patients with WM. Importantly, microarray results have indicated some genes and proteins that may related to better patients survival as previously demonstrated in patients with Multiple Myeloma.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 866-866
Author(s):  
Carolina Berger ◽  
Michael C. Jensen ◽  
Stanley R. Riddell

Abstract Adoptive transfer of T cells has been employed to reconstitute T cell immunity to viruses such as cytomegalovirus (CMV) in immunodeficient allogeneic stem cell transplant (SCT) patients and is being investigated to treat malignancies. In the allogeneic SCT setting, the T cells are derived from the donor and need to be isolated as clones or highly pure populations to avoid graft-versus-host disease. CD8+ T cells can be divided into defined subsets including CD62L− effector memory (TEM) and central memory T cells (TCM) expressing the CD62L lymph node homing molecule. Both TCM and TEM can give rise to cytolytic effector T cells (TE) after antigen stimulation and can be expanded in vitro for immunotherapy. However, the potential of T cells derived from either the TEM or TCM subset to persist in vivo has not been investigated. We used a macaque model to determine whether reconstitution of T cell memory to CMV by adoptive transfer of CD8+ T cell clones depended on their origin from either the CD62L+ TCM or CD62L− TEM subset. T cell clones were retrovirally transduced to express the macaque CD19 or CD20 surface marker to allow tracking of T cells in vivo. Clones derived from both TCM and TEM had similar avidity and proliferative capacity in vitro, and had a TE phenotype (CD62L−CCR7−CD28−CD127−, granzyme B+). TCM and TEM-derived T cell clones were transferred to macaques at doses of 3–6×108/kg and were both detected in the blood one day after transfer at 1.2–2.7% (low dose) to 20–25% (high dose) of CD8+ T cells. However, the frequency of TEM-derived T cells was undetectable after 3–5 days, and the cells were not present in lymph node or bone marrow obtained at day 14. By contrast, TCM-derived clones persisted in peripheral blood, migrated to tissue sites, and were detectable long-term at significant levels. A distinguishing feature of TCM-derived cells was their responsiveness to homeostatic cytokines. Only TCM-derived clones were rescued from apoptotic cell death by low-dose IL15 for >30 days in vitro and this correlated with higher levels of IL15Rα, IL2Rβ, and IL2Rγ, and of Bcl-xL and Bcl-2, which promote cell survival. To determine if the inability of TEM-derived clones to survive in vitro correlated with an increased susceptibility of cell death in vivo, we measured the proportion of infused cells that were positive for propidium iodide (PI) and Annexin V during the short period of in vivo persistence. One day after transfer, 41–45% of TEM-derived T cells were Annexin V+/PI+, analyzed directly in the blood or after 24 hours of culture. By contrast, only a minor fraction of an adoptively transferred TCM-derived T cell clone was Annexin V+/PI+ and the infused cells survived in vivo. A subset of the persisting T cells reacquired TCM marker (CD62L+CCR7+CD127+CD28+) in vivo and regained functional properties of TCM (direct lytic activity; rapid proliferation to antigen). These T cells produced IFN-γ and TNF-α after peptide stimulation, and studies are in progress to assess their in vivo response to antigen by delivery of T cells expressing CMV proteins. Our studies in a large animal model show for the first time that CD8+ TE derived from TCM but not TEM can persist long-term, occupy memory T cell niches, and restore TCM subsets of CMV-specific immunity. Thus, taking advantage of the genetic programming of cells that have become TCM might yield T cells with greater therapeutic activity and could be targeted for human studies of T cell therapy for both viral and malignant disease.


Sign in / Sign up

Export Citation Format

Share Document