scholarly journals Cure characteristics, tensile properties and swelling behaviour of recycled rubber powder-filled natural rubber compounds

2002 ◽  
Vol 21 (5) ◽  
pp. 565-569 ◽  
Author(s):  
H Ismail ◽  
R Nordin ◽  
A.M Noor
2018 ◽  
Vol 34 ◽  
pp. 01030 ◽  
Author(s):  
Indra Surya ◽  
Syahrul Fauzi Siregar ◽  
Hanafi Ismail

Effects of alkanolamide (ALK) addition on cure characteristics, swelling behaviour and tensile properties of silica-filled natural rubber (NR)/chloroprene rubber (CR) blends were investigated. The ALK was synthesized from Refined Bleached Deodorized Palm Stearin (RBDPS) and diethanolamine, and incorporated into the silica-filled NR/CR blends as a non-toxic rubber additive. The ALK loadings were 0.0, 1.0, 3.0, 5.0 and 7.0 phr. It was found that the ALK exhibited shorter scorch and cure times and higher elongation at break of the silica-filled NR/CR blends. The ALK also exhibited higher torque differences, tensile modulus and tensile strength at a 1.0 phr of ALK loading and then decreased with further increases in the ALK loading. The swelling measurement proved that the 1.0 phr loading of ALK caused the highest degree in crosslink density of the silica-filled NR/CR blends.


2018 ◽  
Vol 197 ◽  
pp. 12005 ◽  
Author(s):  
Indra Surya ◽  
Mimpin Ginting ◽  
Hanafi Ismail

The cure characteristics, swelling behaviour and tensile properties of carbon black (CB)-filled natural rubber (NR)/chloroprene rubber (CR) blends in the presence of alkanolamide (ALK) were investigated. The NR/CR blends were prepared at 50/50 blend ratio. The ALK was prepared from Refined Bleached Deodorized Palm Stearin (RBDPS) and diethanolamine and added into the CB-filled NR/CR blends as a rubber additive. The ALK loadings were 0.0, 1.0, 3.0, 5.0 and 7.0 phr. It was found that the ALK exhibited shorter scorch and cure times and higher elongation at break of the CB-filled NR/CR blends. The ALK also exhibited higher torque differences, tensile modulus and tensile strength up to 5.0 phr of ALK and then decreased with further increases in the ALK loading. The swelling test proved that the 5.0 phr loading of ALK caused the highest degree in crosslink density of the CB-filled NR/CR blends.


2014 ◽  
Vol 625 ◽  
pp. 753-756
Author(s):  
Hisyam Mokhtar ◽  
Razif Nordin ◽  
Saidatulakmar Shamsudin ◽  
N.Z. Noriman

The effect of white fly ash (WFA) on cure characteristics and tensile properties of natural rubber compounds were investigated in the range of 0 to 30 phr. The size of WFA that is used in this study was 45-75 μm. Based on the result, it is found that the scorch time and cure time decreased with increasing of WFA loading. The tensile strength gradually increased to the maximum at 5 phr WFA. The further increase of WFA loading led to the decrease in tensile strength. Tensile properties such as M100 (stress at 100 % elongation) was gradually increased with the increasing of WFA loading, meanwhile, the elongation break showed a decreasing trend.


1948 ◽  
Vol 21 (2) ◽  
pp. 301-313 ◽  
Author(s):  
Geoffrey Gee

Abstract The tensile properties of a range of pure-gum natural rubbers have been reviewed, and it has been shown that their principal features can be understood on the assumption that the tensile strength measured in a given test depends directly on the amount of crystallization at break. The most important single factor in determining tensile strength is the degree of cross-linking. Cross-linking is only needed in order to prevent plastic flow, thus making it possible for the molecules to align themselves by stretching, and hence to crystallize. A very highly cross-linked rubber is weak because the load required to stretch it is so high that the rubber is broken before the elongation becomes large enough to produce crystallization. In general, vulcanization also involves reactions, e.g., the combination of sulfur with the rubber, which inhibit crystallization by producing structural modifications of the rubber. These reduce the tensile strength, especially when the degree of cross-linking is large. These ideas readily explain the effects of swelling and of the temperature of test. They are also used in a brief discussion of the phenomena of overcure, reversion, and aging.


2013 ◽  
Vol 2 (4) ◽  
pp. 38-42
Author(s):  
Indah M.S. Sitorus ◽  
Yudha Widyanata ◽  
Indra Surya

By using a semi-efficient sulphur accelerated vulcanization system, an investigation of the effect of  alkanolamide on cure characteristics and hardness  properties of kaolin-filled natural rubber compounds was carried out. Alkanolamide was synthesized  from Refined Bleached Deodorized Palm Stearin (RBDPS) and diethanolamine. Alkanolamide was incorporated into the kaolin filled-natural rubber compound at 1.0; 3.0; 5.0 and 7.0 Parts per-Hundred RubbeR (phr). It was found that alkanolamide gave shorter scorch time and cure time. Alkanolamide also exhibited higher torque different,  crosslink density, and hardnessup to 5.0 phr and then decreased with further increasing the loading of alkanolamide.


2010 ◽  
Vol 16 (2) ◽  
pp. 149-156 ◽  
Author(s):  
L.O. Ekebafe ◽  
J.E. Imanah ◽  
F.E. Okieimen

Samples of rubber seed shells were carbonized at varying temperatures (100, 200, 300, 400, 500, 600, 700, 800?C) for three hours each and sieved through 150?m screen. The portion of the rubber seed shell carbon that passed through the screen was characterized in terms of loss on ignition, surface area, moisture content, pH, bulk density, and metal content and used in compounding natural rubber. The characterization shows that the pH, conductivity, loss on ignition and the surface area increases as the heating temperature increases, unlike the bulk density which decreases. The compound mixes were cured using efficient vulcanization system. Cure characteristics and physico-mechanical properties of the vulcanisates were measured as a function of filler loading along with that of N330 carbon-black filled natural rubber vulcanisate. The results of the cure characteristics showed that the cure times, scorch times and the torque gradually increased, with increasing filler content for rubber seed shell carbon-filled natural rubber, with filler obtained at carbonizing temperature of 600?C tending to show optimum cure indices. The physico-mechanical properties of the vulcanisates increase with filler loading. The reinforcing potential of the carbonized rubber seed shell carbon was found to increase markedly for the filler obtained at the temperature range 500-600?C and then decrease with further increase in temperature.


Sign in / Sign up

Export Citation Format

Share Document