Devitrification of ionomer glass and its effect on the in vitro biocompatibility of glass-ionomer cements

Biomaterials ◽  
2003 ◽  
Vol 24 (18) ◽  
pp. 3153-3160 ◽  
Author(s):  
K Hurrell-Gillingham ◽  
I.M Reaney ◽  
C.A Miller ◽  
A Crawford ◽  
P.V Hatton
Author(s):  
Valerie Bowser Fajen ◽  
Manville G. Duncanson ◽  
Ram S. Nanda ◽  
G. Frans Currier ◽  
Padmaraj V. Angolkar

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6694
Author(s):  
Flavia Iaculli ◽  
Alessandro Salucci ◽  
Gianni Di Giorgio ◽  
Valeria Luzzi ◽  
Gaetano Ierardo ◽  
...  

Background: Conventional composites are largely used in pediatric restorative dentistry and demonstrate successful clinical outcomes. However, the need for simplification of operative steps in young or uncooperative children demands reliable alternatives. Therefore, the aim of the present systematic review and meta-analysis was to evaluate the in vitro bond strength of glass ionomer cements (GICs) and self-adhesive flowable composites (SFCs) on deciduous teeth. Methods: A comprehensive literature search according to the PRISMA checklist was manually and electronically performed by two independent reviewers through the following databases: MEDLINE/PubMed, Google Scholar, Scopus, and Embase, to include in vitro studies comparing GICs and SFCs bond strength values of restorations on primary teeth. In addition, three groups of meta-analyses were conducted using random-effects models. Results: Three articles meeting the inclusion criteria were selected and subjected to both qualitative and quantitative assessment. No statistically significant difference was found between SFC versus GIC; however, both groups significantly differed with conventional flowable composites (CFs). Conclusions: Despite the absence of significant difference in bond strength values, SFCs may be considered a valid alternative to GICs in the restoration of deciduous teeth, although CFs proved better in vitro performances.


2018 ◽  
Vol 19 (5) ◽  
pp. 104 ◽  
Author(s):  
M R R Silva ◽  
N J C Sena ◽  
D A Cunha ◽  
L C Souza ◽  
N S Rodrigues ◽  
...  

O objetivo deste trabalho é realizar uma revisão de literatura sobre os materiais que estão sendo associados ao cimento de ionômero de vidro (CIV), visando melhorar suas propriedades mecânicas e físico-químicas. Foi realizada uma seleção de artigos científicos nas bases de dados PubMed, Europe PMC e ScienceDirect, usando os descritores Glass Ionomer Cements, Dental Materials e Dental Composite. O critério de inclusão foi estudo in vitro acerca do tema proposto e os de exclusão foram revisões de literatura e estudos clínicos. Foram encontrados 130 artigos, publicados entre os anos de 2012 a 2017, dos quais foram selecionados 10. De acordo com esta revisão, o uso de substâncias naturais, tais como os nanocristais de celulose, melhorou a resistência à compressão e diametral, módulo de elasticidade e resistência ao desgaste do CIV. Já a associação com o propólis resultou na diminuição significativa da resistência à compressão e o aumento da solubilidade do CIV. O uso das nanopartículas de AlO, ZrO e TiO2 foi avaliado, mostrando redução da porosidade dos cimentos ionoméricos e aumento da resistência à compressão. Quando o Nanoclay (montmorillonita de grau polimérico) foi adicionado à porção líquida do CIV, suas propriedades mecânicas melhoraram, entretanto a resistência à tensão diametral não apresentou melhora estatística significante. Portanto, o uso de substâncias associadas ao CIV mostrou melhora de suas propriedades, principalmente quando os nanocristais de celulose foram utilizados, podendo representar um novo e promissor material de restauração dentária.Palavras-chave: Cimentos de Ionômeros de Vidro. Materiais Dentários. Propriedades Físicas e Químicas.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1853 ◽  
Author(s):  
Ella Naumova ◽  
Felix Roth ◽  
Berit Geis ◽  
Christine Baulig ◽  
Wolfgang Arnold ◽  
...  

The retention force of cemented crowns on implant abutments with various luting materials was evaluated. Cobalt–chromium crowns were cemented onto tapered titanium abutments (Camlog) with eugenol-free temporary cement (RelyX TempBond NE), composite-based temporary cement (Bifix Temp), zinc phosphate cement (Harvard Cement), glass-ionomer cements (Meron, Fuji I), and resin-modified glass-ionomer cements (Fuji II, Fuji Plus, Ketac Cem Plus). Specimen aging via hydrostress was performed in artificial saliva at 37 °C for 14 days (S1), followed by hydrothermal stress with thermocycling (S2). The crowns were removed, and the force was recorded (T1). Subsequently, the crowns were recemented, aged, and removed, and the force was recorded (T2, T3). The retention forces differences were statistically significant according to the storage conditions at T1 (p = 0.002) and T3 (p = 0.0002). After aging (S1), Ketac Cem Plus had the highest retention force median value difference (T3 versus T1) (−773 N), whereas RelyX TempBond NE had the lowest (−146 N). After aging (S2), Meron had the highest retention force median value difference (−783 N), whereas RelyX TempBond NE had the lowest (−168 N). Recementation decreased the retention force of the implant-supported cobalt–chromium crowns cemented and recemented with the same luting materials. Luting materials (at T1) and aging conditions significantly impacted the retention force.


2012 ◽  
Vol 13 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Elaheh Vahid-Dastjerdi ◽  
Ali Borzabadi-Farahani ◽  
Homa Pourmofidi-Neistanak ◽  
Nazila Amini

2014 ◽  
Vol 39 (3) ◽  
pp. E109-E117 ◽  
Author(s):  
AB de Paula ◽  
SBP de Fúcio ◽  
RCB Alonso ◽  
GMB Ambrosano ◽  
RM Puppin-Rontani

SUMMARY Objectives The aim of this in vitro study was to investigate the effect of chemical degradation on the surface roughness (Ra) and hardness (Knoop hardness number [KHN]) of nano restorative materials. Methods Disc-shaped specimens (5-mm diameter; 2-mm thick) of Filtek Z350 and TPH Spectrum composites and the Vitremer and Ketac Nano light-curing glass ionomer cements were prepared according to the manufacturers' instructions. After 24 hours, polishing procedures were performed and initial measurements of Ra and KHN were taken. The specimens were divided into 12 groups (n=10) according to material and storage media: artificial saliva, orange juice, and Coca-Cola. After 30 days of storage, the specimens were reevaluated for Ra and KHN. The pH values of the storage media were measured weekly. Data were tested for significant differences by repeated-measures three-way analysis of variance and Tukey tests (p<0.05). Results Composites were found to present lower roughness values and higher hardness values than the ionomeric materials under all storage conditions. After degradation, the KHN of all experimental samples decreased significantly, while the Ra of the ionomeric materials increased, depending on the media, with a markedly negative impact of Coca-Cola and orange juice. There was no difference among the storage media for Filtek Z350 with regard to the KHN values. Nanofillers did not show any influence on the roughness and hardness of resin-modified glass ionomer cements and resin composites concerning their degradation resistance.


Sign in / Sign up

Export Citation Format

Share Document