Sterilization, storage stability and in vivo biocompatibility of poly(trimethylene carbonate)/poly(adipic anhydride) blends

Biomaterials ◽  
2000 ◽  
Vol 21 (9) ◽  
pp. 945-955 ◽  
Author(s):  
U. Edlund ◽  
A.-C. Albertsson ◽  
S.K. Singh ◽  
I. Fogelberg ◽  
B.O. Lundgren
2010 ◽  
Vol 95A (3) ◽  
pp. 940-949 ◽  
Author(s):  
Erhan Bat ◽  
Josée A. Plantinga ◽  
Martin C. Harmsen ◽  
Marja J. A. van Luyn ◽  
Jan Feijen ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1438
Author(s):  
Silvio Curia ◽  
Feifei Ng ◽  
Marie-Emérentienne Cagnon ◽  
Victor Nicoulin ◽  
Adolfo Lopez-Noriega

This article presents the evaluation of diblock and triblock poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate) amphiphilic copolymers (PEG-PTMCs) as excipients for the formulation of long-acting injectables (LAIs). Copolymers were successfully synthesised through bulk ring-opening polymerisation. The concomitant formation of PTMC homopolymer could not be avoided irrespective of the catalyst amount, but the by-product could easily be removed by gel chromatography. Pure PEG-PTMCs undergo faster erosion in vivo than their corresponding homopolymer. Furthermore, these copolymers show outstanding stability compared to their polyester analogues when formulated with amine-containing reactive drugs, which makes them particularly suitable as LAIs for the sustained release of drugs susceptible to acylation.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 509
Author(s):  
Johanna Zech ◽  
Daniel Gold ◽  
Nadeen Salaymeh ◽  
Netanel Cohen Sasson ◽  
Ithai Rabinowitch ◽  
...  

Artemisone is an innovative artemisinin derivative with applications in the treatment of malaria, schistosomiasis and other diseases. However, its low aqueous solubility and tendency to degrade after solubilisation limits the translation of this drug into clinical practice. We developed a self-microemulsifying drug delivery system (SMEDDS), which is easy to produce (simple mixing) with a high drug load. In addition to known pharmaceutical excipients (Capmul MCM, Kolliphor HS15, propylene glycol), we identified Polysorb ID 46 as a beneficial new additional excipient. The physicochemical properties were characterized by dynamic light scattering, conductivity measurements, rheology and electron microscopy. High storage stability, even at 30 °C, was achieved. The orally administrated artemisone SMEDDS formulation was highly active in vivo in S. mansoni infected mice. Thorough elimination of the adult worms, their eggs and prevention of the deleterious granuloma formation in the livers of infected mice was observed even at a relatively low dose of the drug. The new formulation has a high potential to accelerate the clinical use of artemisone in schistosomiasis and malaria.


2012 ◽  
Vol 629 ◽  
pp. 60-63
Author(s):  
Tao Jiang ◽  
Guo Quan Zhang ◽  
Hui Li ◽  
Ji Na Xun

In the active field of vascular graft research, in situ vascular tissue engineering is a novel concept. This approach aims to use biodegradable synthetic materials. After implantation, the synthetic material progressively degrades and should be replaced by autologous cells. Poly (ε-caprolactone) (PCL) is often used for vascular graft because of its good mechanical strength and its biocompatibility. It is easily processed into micro and nano-fibers by electrospinning to form a porous, cell-friendly scaffold. However, the degradation time of polycaprolactone is too long to match the tissue regeneration time. In this study, poly (ε-caprolactone) /poly (trimethylene carbonate) (PTMC) blend scaffold materials have been prepared for biodegradable vascular graft using an electrospinning process. Because the degradation time of PTMC is shorter than PCL in vivo. The morphological characters of PCL/PTMC blend scaffold materials were investigated by scanning electron microscope (SEM). The molecular components and some physical characteristics of the blend scaffold materials were tested by FT-IR and DSC analysis.


Biomaterials ◽  
2006 ◽  
Vol 27 (9) ◽  
pp. 1741-1748 ◽  
Author(s):  
Zheng Zhang ◽  
Roel Kuijer ◽  
Sjoerd K. Bulstra ◽  
Dirk W. Grijpma ◽  
Jan Feijen

2018 ◽  
Vol 6 (19) ◽  
pp. 3040-3047 ◽  
Author(s):  
Yaqin Zhu ◽  
Jian Zhang ◽  
Fenghua Meng ◽  
Liang Cheng ◽  
Jan Feijen ◽  
...  

Docetaxel-loaded core crosslinked HA-P(TMC-DTC) micelles show high targetability to CD44-overexpressing MDA-MB-231 breast tumor and effectively inhibit tumor growth.


Nanomedicine ◽  
2020 ◽  
Vol 15 (15) ◽  
pp. 1487-1499
Author(s):  
Yaofa Lin ◽  
Ronghua Yu ◽  
Gang Yin ◽  
Zixian Chen ◽  
Haodong Lin

Aim: To deliver syringic acid (SA) with a nanocarrier and enhance its function. Materials & methods: mPEG-PLGA-PLL (PEAL) nanoparticles were used to deliver SA. The characterization, storage stability, drug release, blood-compatibility and biocompatibility of SA-PEAL were detected by in vitro and in vivo assays. Cellular phenotypic experiments and rat sciatic nerve injury models were used to evaluate the function of SA-PEALs. Results: SA-PEAL had good storage stability, blood-compatibility and biocompatibility and could slowly release SA. SA-PEAL significantly enhanced the proliferation and migration ability of Schwann cells and function recovery of injured sciatic nerves. Conclusion: Our study provides an effective nano-delivery system for enhancing the neural repair function of SA and promoting further applications of SA.


2008 ◽  
Vol 08 (01) ◽  
pp. 1-15 ◽  
Author(s):  
YOS S. MORSI ◽  
CYNTHIA S. WONG

The concept of tissue-engineered heart valves offers an alternative to current heart valve replacements that is capable of addressing shortcomings such as life-long administration of anticoagulants, inadequate durability, and inability to grow. Since tissue engineering is a multifaceted area, studies conducted have focused on different aspects such as hemodynamics, cellular interactions and mechanisms, scaffold designs, and mechanical characteristics in the form of both in vitro and in vivo investigations. This review concentrates on the advancements of scaffold materials and manufacturing processes, and on cell–scaffold interactions. Aside from the commonly used materials, polyglycolic acid and polylactic acid, novel polymers such as hydrogels and trimethylene carbonate-based polymers are being developed to simulate the natural mechanical characteristics of heart valves. Electrospinning has been examined as a new manufacturing technique that has the potential to facilitate tissue formation via increased surface area. The type of cells utilized for seeding onto the scaffolds is another factor to take into consideration; currently, stem cells are of great interest because of their potential to differentiate into various types of cells. Although extensive studies have been conducted, the creation of a fully functional heart valve that is clinically applicable still requires further investigation due to the complexity and intricacies of the heart valve.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 445
Author(s):  
Vijayabhaskarreddy Junnuthula ◽  
Amir Sadeghi Boroujeni ◽  
Shoupeng Cao ◽  
Shirin Tavakoli ◽  
Roxane Ridolfo ◽  
...  

Posterior eye tissues, such as retina, are affected in many serious eye diseases, but drug delivery to these targets is challenging due to various anatomical eye barriers. Intravitreal injections are widely used, but the intervals between invasive injections should be prolonged. We synthesized and characterized (1H NMR, gel permeation chromatography) block copolymers of poly(ethylene glycol), poly(caprolactone), and trimethylene carbonate. These polymers self-assembled to polymersomes and polymeric micelles. The mean diameters of polymersomes and polymeric micelles, about 100 nm and 30–50 nm, respectively, were obtained with dynamic light scattering. Based on single particle tracking and asymmetric flow field-flow fractionation, the polymeric micelles and polymersomes were stable and diffusible in the vitreous. The materials did not show cellular toxicity in cultured human umbilical vein endothelial cells in the Alamar Blue Assay. Pharmacokinetics of the intravitreal nanocarriers in the rabbits were evaluated using in vivo fluorophotometry. The half-lives of the polymersomes (100 nm) and the micelles (30 nm) were 11.4–32.7 days and 4.3–9.5 days. The intravitreal clearance values were 1.7–8.7 µL/h and 3.6–5.4 µL/h for polymersomes and polymeric micelles, respectively. Apparent volumes of distribution of the particles in the rabbit vitreous were 0.6–1.3 mL for polymeric micelles and 1.9–3.4 mL for polymersomes. Polymersomes were found in the vitreous for at least 92 days post-dosing. Furthermore, fundus imaging revealed that the polymersomes accumulated near the optic nerve and retained there even at 111 days post-injection. Polymersomes represent a promising technology for controlled and site-specific drug delivery in the posterior eye segment.


Sign in / Sign up

Export Citation Format

Share Document