Source mechanisms of seismic events induced at Ziemowit coal mine: comparison with mining information

2021 ◽  
Author(s):  
Dmitry Kostylev ◽  
Natalya Boginskaya ◽  
Alexander Zakupin

Abstract Induced seismicity is an increase in seismic activity caused by the human engineering. An example of such activity is the mineral exploration, large water reservoirs construction, exploitation of underground oil and gas storages, etc. The authors studied the seismicity in the Uglegorsky district of Sakhalin region, where the Solntsevskoye brown coal field is located, which is the most promising in the island. Its area is over 100 sq. km, and productive strata of the Verkhneduiskaya formation with a thickness of up to 600 m contains 12 coal seams, 8 of which are working. Active mining of brown coal is carried out at the Solntsevsky coal mine, and blasting operations are performed on a large scale, that, as a result, does not exclude the relation of the seismic process to technogenic seismicity. The earthquake recurrence curves for two decades beginning from 2000 to the present were constructed in the work to compare the characteristics of the seismic regime in the studied area. The difference in the slope angle of recurrence graph during the period of 2011-2020 (the period of the most active development of the Solntsevsky coal mine) from the previous decade is quite significant. The maps of spatiotemporal distribution of seismic events epicenters in the vicinity of Solntsevsky coal mine are constructed. The contraction of zones of seismic events concentration to the mining areas, first of all to the Solntsevsky coal mine, have been found. Such a combination allows us to talk about an increase in seismicity of the region during the last years and change in its character from the natural to a mixed natural and technogenic. The focal mechanisms of the largest earthquakes occurred in the Uglegorsky district have been constructed in order to prove the change in seismicity character and reasons for the earthquake occurrence in the studied area. The mechanisms of seismic events of 2020 are classified as strike-slip faults, that is not character for the most earthquakes on the territory of Sakhalin Island. The authors made an attempt to determine the regularities of the parameters of the produced blasts and earthquakes through dynamic parameters of the seismic events foci by means of studying the frequency content of earthquakes and blasts in order to determine a corner frequency from the focal velocity spectrum.


2018 ◽  
Author(s):  
Floriane Provost ◽  
Jean-Philippe Malet ◽  
Clément Hibert ◽  
Agnès Helmstetter ◽  
Mathilde Radiguet ◽  
...  

Abstract. In the last decade, numerous studies focused on the analysis of seismic waves generated by Earth surface processes such as landslides. The installation of seismometers on unstable slopes revealed a variety of seismic signals suspected to be generated by slope deformation, weathering of the slope material or fluid circulation. A standard classification for seismic sources generated by unstable slopes needs to be proposed in order to compare the seismic activity of several unstable slopes and identify possible correlation of the seismic activity rate with triggering factors. The objective of this work is to discuss the typology and source mechanisms of seismic events detected at close distances (


2021 ◽  
Vol 946 (1) ◽  
pp. 012002
Author(s):  
D V Kostylev ◽  
N V Boginskaya

Abstract In 2021, work began as a part of the implementation of the decision of the protocol of the Sakhalin branch of the Russian Expert Council on earthquake prediction, seismic hazard and risk assessment dated October 6, 2020 on detailed monitoring in the area of active coal mining at the Solntsevsky open pit coal mine (Sakhalin Island). New points of seismic monitoring were installed directly in the area of the open pit coal mine. Integration of real-time data received from the points in real time into a unified seismic monitoring system in the Sakhalin Region was ensured. The results of registration of seismic events of various origins since the commissioning of the stations are presented. A significant increase in the accuracy of the determined epicenters and the possibilities of determining earthquakes and industrial explosions has been noted. The results of the monitoring system for studying the landslide process in the area of the open pit coal mine, as well as the probable factors that caused the landslide, are shown. The developed monitoring system allows for representative registration of seismic events with ML ≥ 0.8 in the immediate vicinity of open pit coal mine, which makes it possible to control blasting operations with increased accuracy, as well as weak and possible induced seismicity formed as a result of a constant technogenic impact on the subsoil.


2020 ◽  
Author(s):  
Nima Nooshiri ◽  
Ivan Lokmer ◽  
Chris Bean ◽  
Andrew Bell ◽  
Martin Möllhoff ◽  
...  

<p>Sierra Negra is a basaltic shield volcano in the Galapagos Archipelago (Ecuador) and is the largest of the Galapagos volcanoes. The 2018 eruption was a complex event that included eruptive fissures opening on the northern rim and north-western flank. In this study, we report observations of seismic signals recorded on a temporary dense local network consisting of 14 seismometers and nearby permanent seismic stations, and analyze this data set to retrieve the source mechanisms of moderate pre- and co-eruptive seismic events (body-wave magnitude range of M3.5-5.3). Because of the shallow depths of the seismic events (<2 km) and short source-receiver distances (~1.5-10 km), that are comparable to or shorter than the wavelengths of radiated waves, the effect of near- and intermediate-field terms on dynamic displacements can be significant and hence the far-field assumption may not be well-suited for determining fault-plane solutions. Therefore, we pay special attention on the polarization properties of seismic waves excited at the near-field and intermediate-field ranges, and model and analyze complete displacement wave-fields to determine seismic sources. The source mechanism solutions are also interpreted in light of the volcanic unrest leading to the 2018 eruption, GPS observations, and reported regional centroid moment tensors.</p>


2020 ◽  
Author(s):  
Claus Milkereit ◽  
Pa Pa Tun ◽  
Oo Than ◽  
Kyawmoe Oo ◽  
Kyaw Zayar Naing ◽  
...  

<p>In 2005, the capital of Myanmar was moved to the newly designed city of Nay Pyi Taw, some 300 km north of Yangon. Both Yangon as well as the capital Nay Pyi Taw are situated along the 1200 km long north-south trending Sagaing Fault, an active strike-slip fault which showed large and disastrous earthquakes in the past. Almost nothing is known about details of the Sagaing Fault in the area of Nay Pyi Taw, neither the precise location of different branches of the Sagaing Fault, nor the precise location of recent seismic events along different branches of the fault, nor the distribution and depth of the sedimentary layers in and around Nay Pyi Taw.</p><p>Since 2014, 4 shallow earthquakes with magnitudes larger than ML=4 are reported near Nay Pyi Taw. Some were clearly felt in the capital. The different location solutions reported by local and international agencies indicate a location accuracy not better accurate than 5 km. We derived re-locations and moment tensor analyses as well as meaningful model uncertainties for these events. The results show that the Sagaing Fault near Nay Pyi Taw may follow different active branches. While geological mapping indicates an active branch west of Nay Pyi Taw, the event locations and source mechanisms of the recent seismic activity indicate an active branch under and east of Nay Pyi Taw. Here, a geological mapping is complicated as sediments of unknown thickness cover the basement. Therefore, a microzonation study has been started with the aim to determine the fundamental resonant frequencies of the sedimentary layers, their spatial variability, and the amplification factors. First results of this ongoing project with more than 50 noise recordings in and around Nay Pyi Taw indicate amplification of ground motion with a factor up to 10 in distinct frequency ranges from 0.3 – 10 Hz.</p><p> </p>


Author(s):  
Dmitriy Malovichko

The assessment of seismic hazard in mines has several peculiarities compared to the similar assessment for tectonic earthquakes: (a) in mines seismicity is typically induced by the extraction of rocks, what makes the assessment of hazard depends on the planned mining sequence, (b) many seismic events in mines have source mechanisms different from the mechanisms of tectonic earthquakes, (c) the likelihoods of both strong ground motion from distant seismic events and localized sudden inelastic deformation on the contour of excavations are of interest, (d) the spatial distribution of seismic hazard may experience significant change over relatively short periods of time (several years), which makes it possible to implement rigorous testing of the hazard forecasts, selection of optimal forecast method and its calibration. This paper provides a brief review of recent publications on the assessment of seismic hazard in mines. The method of intermediate- and long-term hazard forecast based on the combination of observed seismicity and seismicity modeled for the planned mining sequence is discussed in detail. The application of this method at the acting underground mine in Australia is presented.


2015 ◽  
Vol 4 (1) ◽  
pp. 26-38 ◽  
Author(s):  
Alicja Caputa ◽  
Adam Talaga ◽  
Łukasz Rudziński

Abstract The exploitation of georesources by underground mining can be responsible for seismic activity in areas considered aseismic. Since strong seismic events are connected with rockburst hazard, it is a continuous requirement to reduce seismic risk. One of the most effective methods to do so is blasting in potentially hazardous mining panels. In this way, small to moderate tremors are provoked and stress accumulation is substantially reduced. In this paper we present an analysis of post-blasting events using Full Moment Tensor (MT) inversion at the Rudna mine, Poland, underground seismic network. In addition, we describe the problems we faced when analyzing seismic signals. Our studies show that focal mechanisms for events that occurred after blasts exhibit common features in the MT solution. The strong isotropic and small Double Couple (DC) component of the MT, indicate that these events were provoked by detonations. On the other hand, post-blasting MT is considerably different than the MT obtained for strong mining events. We believe that seismological analysis of provoked and unprovoked events can be a very useful tool in confirming the effectiveness of blasting in seismic hazard reduction in mining areas.


2009 ◽  
Vol 46 (2) ◽  
pp. 408-420 ◽  
Author(s):  
M. Alber ◽  
R. Fritschen ◽  
M. Bischoff ◽  
T. Meier
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document