In vitro selection of B cell line variants stimulating human V γ9/Vδ2 T-cells

1997 ◽  
Vol 56 ◽  
pp. 235
Author(s):  
E. Champagne ◽  
H. Lancini ◽  
M. Guiraud ◽  
F. L'Faqihi ◽  
J.J. Foumié
Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-29
Author(s):  
Jie Wang ◽  
Katarzyna Urbanska ◽  
Prannda Sharma ◽  
Mathilde Poussin ◽  
Reza Nejati ◽  
...  

Background: Peripheral T-cell lymphomas (PTCL) encompass a highly heterogeneous group of T-cell malignancies and are generally associated with a poor prognosis. Combination chemotherapy results in consistently poorer outcomes for T-cell lymphomas compared with B-cell lymphomas.1 There is an urgent clinical need to develop novel approaches to treatment of PTCL. While CD19- and CD20-directed immunotherapies have been successful in the treatment of B-cell malignancies, T-cell malignancies lack suitable immunotherapeutic targets. Brentuximab Vedotin, a CD30 antibody-drug conjugate, is not applicable to PTCL subtypes which do not express CD30.2 Broadly targeting pan-T cell markers is predicted to result in extensive T-cell depletion and clinically significant immune deficiency; therefore, a more tumor-specific antigen that primarily targets the malignant T-cell clone is needed. We reasoned that since malignant T cells are clonal and express the same T-cell receptor (TCR) in a given patient, and since the TCR β chain in human α/β TCRs can be grouped into 24 functional Vβ families targetable by monoclonal antibodies, immunotherapeutic targeting of TCR Vβ families would be an attractive strategy for the treatment of T-cell malignancies. Methods: We developed a flexible approach for targeting TCR Vβ families by engineering T cells to express a CD64 chimeric immune receptor (CD64-CIR), comprising a CD3ζ T cell signaling endodomain, CD28 costimulatory domain, and the high-affinity Fc gamma receptor I, CD64. T cells expressing CD64-CIR are predicted to be directed to tumor cells by Vβ-specific monoclonal antibodies that target tumor cell TCR, leading to T cell activation and induction of tumor cell death by T cell-mediated cytotoxicity. Results: This concept was first evaluated in vitro using cell lines. SupT1 T-cell lymphoblasts, which do not express a native functioning TCR, were stably transduced to express a Vβ12+ MART-1 specific TCR, resulting in a Vβ12 TCR expressing target T cell line.3 Vβ family specific cytolysis was confirmed by chromium release assays using co-culture of CD64 CIR transduced T cells with the engineered SupT1-Vβ12 cell line in the presence of Vβ12 monoclonal antibody. Percent specific lysis was calculated as (experimental - spontaneous lysis / maximal - spontaneous lysis) x 100. Controls using no antibody, Vβ8 antibody, and untransduced T cells did not show significant cytolysis (figure A). Next, the Jurkat T cell leukemic cell line, which expresses a native Vβ8 TCR, was used as targets in co-culture. Again, Vβ family target specific cytolysis was achieved in the presence of CD64 CIR T cells and Vβ8, but not Vβ12 control antibody. Having demonstrated Vβ family specific cytolysis in vitro using target T cell lines, we next evaluated TCR Vβ family targeting in vivo. Immunodeficient mice were injected with SupT1-Vβ12 or Jurkat T cells with the appropriate targeting Vβ antibody, and either CD64 CIR T cells or control untransduced T cells. The cell lines were transfected with firefly luciferase and tumor growth was measured by bioluminescence. The CD64 CIR T cells, but not untransduced T cells, in conjunction with the appropriate Vβ antibody, successfully controlled tumor growth (figure B). Our results provide proof-of-concept that TCR Vβ family specific T cell-mediated cytolysis is feasible, and informs the development of novel immunotherapies that target TCR Vβ families in T-cell malignancies. Unlike approaches that target pan-T cell antigens, this approach is not expected to cause substantial immune deficiency and could lead to a significant advance in the treatment of T-cell malignancies including PTCL. References 1. Coiffier B, Brousse N, Peuchmaur M, et al. Peripheral T-cell lymphomas have a worse prognosis than B-cell lymphomas: a prospective study of 361 immunophenotyped patients treated with the LNH-84 regimen. The GELA (Groupe d'Etude des Lymphomes Agressives). Ann Oncol Off J Eur Soc Med Oncol. 1990;1(1):45-50. 2. Horwitz SM, Advani RH, Bartlett NL, et al. Objective responses in relapsed T-cell lymphomas with single agent brentuximab vedotin. Blood. 2014;123(20):3095-3100. 3. Hughes MS, Yu YYL, Dudley ME, et al. Transfer of a TCR Gene Derived from a Patient with a Marked Antitumor Response Conveys Highly Active T-Cell Effector Functions. Hum Gene Ther. 2005;16(4):457-472. Figure Disclosures Schuster: Novartis, Genentech, Inc./ F. Hoffmann-La Roche: Research Funding; AlloGene, AstraZeneca, BeiGene, Genentech, Inc./ F. Hoffmann-La Roche, Juno/Celgene, Loxo Oncology, Nordic Nanovector, Novartis, Tessa Therapeutics: Consultancy, Honoraria.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 806-806 ◽  
Author(s):  
Marco Ruella ◽  
Saad S Kenderian ◽  
Olga Shestova ◽  
Taylor Chen ◽  
John Scholler ◽  
...  

Abstract Hodgkin lymphoma (HL) generally carries a good prognosis. However, 10-15% of patients relapse or are refractory to first-line therapy. These patients have a poor prognosis and would benefit from innovative approaches. Our group and others have demonstrated the clinical efficacy of anti-CD19 chimeric antigen receptor redirected T cells (CART19, CTL019) for refractory B cell malignancies. Despite the B-cell origin of the malignant Hodgkin Reed-Sternberg (HRS) cells, B-cell antigens, in particular CD19, are typically not expressed in HL. We sought to define a HL-associated cell membrane antigen that could be targeted by CAR T cells. Given the relative paucity of the malignant cells and the importance of the immunosuppressive tumor microenvironment in HL, the ideal target would be expressed on neoplastic cells as well as on infiltrating immune cells in order to provide robust stimulation of the CAR T cells. Immunohistochemistry for novel HL targets on 10 patient samples revealed that 5/10 patients expressed CD123 on the HRS cells. CD123 was also seen on immune cells of the microenvironment in most samples. CD123 is the α chain of the receptor for interleukin-3 (IL-3), an important cytokine in hematopoietic growth and differentiation that has been previously shown to promote HL cell line growth (Aldinucci et al, Leuk & Lymph, 2005). As primary HL is non-engraftable in mice we turned to immortalized HL cell lines and confirmed that CD123 is expressed by flow cytometry and Q-PCR in four different HL cell lines (HDLM-2, KMH2, SUPHD1, and L428). To determine the role of IL-3 signaling in HL we engrafted NOD-SCID-γ-chain KO mice that overexpress human cytokines including IL-3 (NSG-S mice) with the luciferase-expressing HDLM-2 cell line. After i.v. injection, the neoplastic cells progressively formed disseminated soft tissue masses. Serial injections of a neutralizing anti-IL3 antibody slowed the growth of tumor, suggesting that CD123 may be a particularly relevant target in HL. We therefore sought to investigate the utility of anti-CD123 CAR T cells (CART123) for the treatment of HL. We have recently described the activity of CART123 in human acute myeloid leukemia (Gill et al, Blood, 2014). Our construct is a 2nd generation CAR, comprising 4-1BB co-stimulatory and CD3-ζ chain signaling domains with an anti-CD123 scFv. In vitro, CART123 specifically degranulate, proliferate, produce cytokines and kill HL cells (Table 1). Moreover, long-term co-culture (20 days) of CART123 with HDLM-2 cells at a 1:1 ratio led to T cell proliferation and complete elimination of HL cells by day 4. To confirm these in vitro data, we developed a rigorous in vivo model injecting 1 million luciferase+ HDLM-2 cells i.v. on day 0. Serial bioluminescent imaging (BLI) demonstrated low level of tumor on day 7, which was followed by gradual increase in tumor burden over approximately 6 weeks, reproducing the indolent nature of the human disease. At day 43 when the tumor burden was 20-fold higher than baseline, mice were treated with 1.5 million CART123 cells or control T cells. CART123 induced complete and durable eradication of disseminated tumor within 14 days, leading to 100% relapse-free and 100% overall survival at 6 months (Figure 1 and 2). Tumor elimination was associated with extensive CAR T cell expansion as detected by flow cytometry in serial peripheral blood bleedings. In summary, we show for the first time that human CD123-redirected T cells display potent therapeutic activity against disseminated HL. We have previously demonstrated that CART123 lead to myelosuppression, suggesting that our findings could be translated to treat patients with refractory HL with a combined CART123 and rescue autologous bone marrow transplantation. Table 1 In vitro activity of CART123 compared to untransduced control T cells (UTD) against a HL cell line (HDLM-2). IN VITRO EXPERIMENT CART123* UTD CD107a Degranulation (4 hrs, E:T = 1:5) 59.3% 2.69% Specific Killing (24 hrs) E:T = 2:1 57% 5% E:T = 0.25:1 27% 1% Proliferating cells (CFSE based) (5 days, E:T = 1:1) 96.4% 20% Cytokine production (24 hrs, E:T = 1:1) (Luminex, MFI) INF-γ 38,265 42 IL-2 85,604 0 TNF-α 10,684 55 MIP-1β 40,038 111 IL-6 16,425 110 GM-CSF 99,915 285 *All P values are <0.05 when compared to UTD Figure 2 Figure 2. Disclosures Ruella: Novartis: Research Funding. Kenderian:Novartis: Research Funding. Shestova:Novartis: Research Funding. Chen:Novartis: Research Funding. Scholler:Novartis: Research Funding. June:Novartis: Patents & Royalties, Research Funding. Gill:Novartis: Research Funding.


2020 ◽  
Vol 65 (9-10) ◽  
pp. 3-7
Author(s):  
V. V. Gostev ◽  
Yu. V. Sopova ◽  
O. S. Kalinogorskaya ◽  
M. E. Velizhanina ◽  
I. V. Lazareva ◽  
...  

Glycopeptides are the basis of the treatment of infections caused by MRSA (Methicillin-Resistant Staphylococcus aureus). Previously, it was demonstrated that antibiotic tolerant phenotypes are formed during selection of resistance under the influence of high concentrations of antibiotics. The present study uses a similar in vitro selection model with vancomycin. Clinical isolates of MRSA belonging to genetic lines ST8 and ST239, as well as the MSSA (ATCC29213) strain, were included in the experiment. Test isolates were incubated for five hours in a medium with a high concentration of vancomycin (50 μg/ml). Test cultures were grown on the medium without antibiotic for 18 hours after each exposure. A total of ten exposure cycles were performed. Vancomycin was characterized by bacteriostatic action; the proportion of surviving cells after exposure was 70–100%. After selection, there was a slight increase in the MIC to vancomycin (MIC 2 μg/ml), teicoplanin (MIC 1.5–3 μg/ml) and daptomycin (MIC 0.25–2 μg/ml). According to the results of PAP analysis, all strains showed an increase in the area under curve depending on the concentration of vancomycin after selection, while a heteroresistant phenotype (with PAP/AUC 0.9) was detected in three isolates. All isolates showed walK mutations (T188S, D235N, E261V, V380I, and G223D). Exposure to short-term shock concentrations of vancomycin promotes the formation of heteroresistance in both MRSA and MSSA. Formation of VISA phenotypes is possible during therapy with vancomycin.


2002 ◽  
Vol 5 (6) ◽  
pp. 473-480
Author(s):  
Bentham Science Publisher A.N. Alexandrov ◽  
Bentham Science Publisher V.Yu. Alakhov ◽  
Bentham Science Publisher A.I. Miroshnikov

Sign in / Sign up

Export Citation Format

Share Document