CD34+ Thy-1 + thymic stromal cells are located in the subcapsular cortex of the human thymus

1997 ◽  
Vol 56 (1-3) ◽  
pp. 87
Author(s):  
E Martínez-Cáceres
1997 ◽  
Vol 56 ◽  
pp. 87 ◽  
Author(s):  
E. Martínez-Cáceres ◽  
A.C. Jaleco ◽  
P. Res ◽  
E. Noteboom ◽  
K. Weyer ◽  
...  

2017 ◽  
Vol 214 (8) ◽  
pp. 2205-2216 ◽  
Author(s):  
Andrea J. White ◽  
Song Baik ◽  
Sonia M. Parnell ◽  
Amanda M. Holland ◽  
Frank Brombacher ◽  
...  

In the thymus, stromal microenvironments support a developmental program that generates mature T cells ready for thymic exit. The cellular and molecular specialization within thymic stromal cells that enables their regulation of specific stages of thymocyte development is poorly understood. Here, we show the thymic microenvironment expresses the type 2 IL-4R complex and is functionally responsive to its known ligands, IL-4 and IL-13. Absence of IL-4Rα limits thymocyte emigration, leading to an intrathymic accumulation of mature thymocytes within medullary perivascular spaces and reduced numbers of recent thymic emigrants. Thymus transplantation shows this requirement maps to IL-4Rα expression by stromal cells, and we provide evidence that it regulates thymic exit via a process distinct from S1P-mediated migration. Finally, we reveal a cellular mechanism by which IL-4+IL-13+ invariant NKT cells are necessary for IL-4Rα signaling that regulates thymic exit. Collectively, we define a new axis for thymic emigration involving stimulation of the thymic microenvironment via type 2 cytokines from innate T cells.


1997 ◽  
Vol 94 (8) ◽  
pp. 3903-3908 ◽  
Author(s):  
W. Van Ewijk ◽  
J. de Kruif ◽  
W. T. V. Germeraad ◽  
P. Berendes ◽  
C. Ropke ◽  
...  

Author(s):  
Alexandra Y. Kreins ◽  
Stefano Maio ◽  
Fatima Dhalla

AbstractAs the primary site for T cell development, the thymus is responsible for the production and selection of a functional, yet self-tolerant T cell repertoire. This critically depends on thymic stromal cells, derived from the pharyngeal apparatus during embryogenesis. Thymic epithelial cells, mesenchymal and vascular elements together form the unique and highly specialised microenvironment required to support all aspects of thymopoiesis and T cell central tolerance induction. Although rare, inborn errors of thymic stromal cells constitute a clinically important group of conditions because their immunological consequences, which include autoimmune disease and T cell immunodeficiency, can be life-threatening if unrecognised and untreated. In this review, we describe the molecular and environmental aetiologies of the thymic stromal cell defects known to cause disease in humans, placing particular emphasis on those with a propensity to cause thymic hypoplasia or aplasia and consequently severe congenital immunodeficiency. We discuss the principles underpinning their diagnosis and management, including the use of novel tools to aid in their identification and strategies for curative treatment, principally transplantation of allogeneic thymus tissue.


Apmis ◽  
2001 ◽  
Vol 109 (7-8) ◽  
pp. 481-492 ◽  
Author(s):  
ANN P. CHIDGEY ◽  
RICHARD L. BOYD

Apmis ◽  
2008 ◽  
Vol 109 (7-8) ◽  
pp. 481-492
Author(s):  
Ann R. Chidgey ◽  
Richard L. Boyd

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 548-548
Author(s):  
Loredana Ruggeri ◽  
Elena Urbani ◽  
Davide Chiasserini ◽  
Federica Susta ◽  
Pierluigi Orvietani ◽  
...  

Abstract One outstanding issue in allogeneic hematopoietic transplantation is impaired immune reconstitution. As the primary site of T cell development, the thymus plays a key role in the generation of a strong yet self-tolerant adaptive immune response, essential in the face of the potential threat from pathogens or neoplasia. Allogeneic hematopoietic transplantation may acutely damage the thymus through the chemo or radiotherapy, antibody therapy of the conditioning regime, infections acquired by the immunosuppressed patient, and thymic graft versus host disease. To date, attempts to improve thymic reconstitution have been disappointing. Pre-clinical experiments and pilot clinical trials tried to assess the role of a variety of therapeutic approaches, such as transfer of lymphoid progenitor cells, thymic grafts, or enhancement of thymopoiesis by administration of hormonal or cytokine/growth factor-based therapies, such as sex-steroid blockade, and IL-7, IL-22, KGF, or Flt-3 ligand administration (reviewed in Chaudhry et al., Immunol Rev. 2016). In mouse MHC mismatched transplantation models (F1 H-2d/b→parent H-2b), we previously found that infusion of donor versus recipient alloreactive NK cells eradicated recipient-type lympho-hematopoietic lineage cells, thereby enhancing engraftment, protecting from GvHD and eradicating leukemia (Ruggeri et al., Science 2002). Here, in the same models we show that infusion of alloreactive NK cells greatly accelerates the post-hematopoietic transplant recovery of donor-type immune cells, i.e., dendritic cells (DCs) (p<0.001), B lineage cells (p<0.001) and thymocytes (p<0.001) and maturation to B (p<0.001) and T cells (p<0.001). By the use of recipient chimeric mice displaying different tissue (i.e., hematopoietic vs non-hematopoietic) susceptibility to donor alloreactive NK cell killing, we show that a specific interaction between donor alloreactive NK cells and recipient DCs is responsible for the accelerated immune rebuilding. We find that donor-versus-recipient alloreactive NK cells trigger recipient DCs to synthesize a protein factor in a DNA translation-depended fashion (i.e., blocking DNA transcription in DCs abrogated the DC ability to produce the factor), and release it. Infusion of NK/DC co-culture supernatants containing this factor induced bone marrow and thymic stromal cells to produce IL-7 (p<0.001) and c-Kit ligand (p<0.001) and, thereby, the extraordinarily accelerated maturation of donor DCs, B- and T-cell precursors. Interestingly, in vitro experiments with human thymic stromal cells that support human thymocyte proliferation and differentiation demonstrated the exact same mechanisms. Supernatants from human alloreactive NK cell clones and human (HLA-class I KIR ligand mismatched) allogeneic DCs induced IL-7 production by human thymic stromal cells which in turn supported accelerated proliferation and maturation of human thymocytes (p<0.001). The murine and the human "immune rebuilding" factors displayed biochemical similarities as they both are highly hydrophobic 12KDa molecular weight proteins. Mass spectrometry analysis by stable isotope labeling with amino acids in cell culture (SILAC) identified Beta-2 Microglobulin (B2M) as the newly synthesized protein sharing the above biochemical features and present both in murine and human samples. B2M-KO mice used as recipients of MHC mismatched bone marrow transplant and given donor versus recipient alloreactive NK cells were unable to undergo accelerated immune rebuilding. However, their defect was repaired and accelerated rebuilding of donor-type DCs (p<0.001), B lineage cells (p<0.001) and thymocytes (p<0.001) was restored by the administration of culture supernatants obtained from alloreactive NK cells and wild-type (non-KO) MHC mismatched DCs. Finally, RNA interference experiments that silenced the B2M gene in human DCs resulted in loss of biological activity of supernatants obtained from alloreactive NK cells and B2M-silenced DCs. B2M plays a key role in the immune system as it is known to be part of MHC class I molecules. However, its role in signaling for immune precursor cell development has never been recognized. Here we report the discovery of a novel cellular and molecular pathway initiated by alloreactive NK cells and mediated by B2M that leads to greatly accelerated rebuilding of B and T cells after hematopoietic transplantation. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document