thymic stromal cell
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 3)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Alexandra Y. Kreins ◽  
Paola Bonfanti ◽  
E. Graham Davies

Inborn errors of thymic stromal cell development and function lead to impaired T-cell development resulting in a susceptibility to opportunistic infections and autoimmunity. In their most severe form, congenital athymia, these disorders are life-threatening if left untreated. Athymia is rare and is typically associated with complete DiGeorge syndrome, which has multiple genetic and environmental etiologies. It is also found in rare cases of T-cell lymphopenia due to Nude SCID and Otofaciocervical Syndrome type 2, or in the context of genetically undefined defects. This group of disorders cannot be corrected by hematopoietic stem cell transplantation, but upon timely recognition as thymic defects, can successfully be treated by thymus transplantation using cultured postnatal thymic tissue with the generation of naïve T-cells showing a diverse repertoire. Mortality after this treatment usually occurs before immune reconstitution and is mainly associated with infections most often acquired pre-transplantation. In this review, we will discuss the current approaches to the diagnosis and management of thymic stromal cell defects, in particular those resulting in athymia. We will discuss the impact of the expanding implementation of newborn screening for T-cell lymphopenia, in combination with next generation sequencing, as well as the role of novel diagnostic tools distinguishing between hematopoietic and thymic stromal cell defects in facilitating the early consideration for thymus transplantation of an increasing number of patients and disorders. Immune reconstitution after the current treatment is usually incomplete with relatively common inflammatory and autoimmune complications, emphasizing the importance for improving strategies for thymus replacement therapy by optimizing the current use of postnatal thymus tissue and developing new approaches using engineered thymus tissue.


2021 ◽  
Vol 220 (3) ◽  
Author(s):  
Amr H. Allam ◽  
Mirren Charnley ◽  
Kim Pham ◽  
Sarah M. Russell

The β-selection checkpoint of T cell development tests whether the cell has recombined its genomic DNA to produce a functional T cell receptor β (TCRβ). Passage through the β-selection checkpoint requires the nascent TCRβ protein to mediate signaling through a pre-TCR complex. In this study, we show that developing T cells at the β-selection checkpoint establish an immunological synapse in in vitro and in situ, resembling that of the mature T cell. The immunological synapse is dependent on two key signaling pathways known to be critical for the transition beyond the β-selection checkpoint, Notch and CXCR4 signaling. In vitro and in situ analyses indicate that the immunological synapse promotes passage through the β-selection checkpoint. Collectively, these data indicate that developing T cells regulate pre-TCR signaling through the formation of an immunological synapse. This signaling platform integrates cues from Notch, CXCR4, and MHC on the thymic stromal cell to allow transition beyond the β-selection checkpoint.


Author(s):  
Alexandra Y. Kreins ◽  
Stefano Maio ◽  
Fatima Dhalla

AbstractAs the primary site for T cell development, the thymus is responsible for the production and selection of a functional, yet self-tolerant T cell repertoire. This critically depends on thymic stromal cells, derived from the pharyngeal apparatus during embryogenesis. Thymic epithelial cells, mesenchymal and vascular elements together form the unique and highly specialised microenvironment required to support all aspects of thymopoiesis and T cell central tolerance induction. Although rare, inborn errors of thymic stromal cells constitute a clinically important group of conditions because their immunological consequences, which include autoimmune disease and T cell immunodeficiency, can be life-threatening if unrecognised and untreated. In this review, we describe the molecular and environmental aetiologies of the thymic stromal cell defects known to cause disease in humans, placing particular emphasis on those with a propensity to cause thymic hypoplasia or aplasia and consequently severe congenital immunodeficiency. We discuss the principles underpinning their diagnosis and management, including the use of novel tools to aid in their identification and strategies for curative treatment, principally transplantation of allogeneic thymus tissue.


2010 ◽  
Vol 207 (11) ◽  
pp. 2521-2532 ◽  
Author(s):  
Francis A. Flomerfelt ◽  
Nahed El Kassar ◽  
Chandra Gurunathan ◽  
Kevin S. Chua ◽  
Stacy C. League ◽  
...  

Niche availability provided by stromal cells is critical to thymus function. Thymi with diminished function contain fewer stromal cells, whereas thymi with robust function contain proliferating stromal cell populations. Here, we show that the thymus, brain, and testes–associated gene (Tbata; also known as SPATIAL) regulates thymic epithelial cell (TEC) proliferation and thymus size. Tbata is expressed in thymic stromal cells and interacts with the enzyme Uba3, thereby inhibiting the Nedd8 pathway and cell proliferation. Thymi from aged Tbata-deficient mice are larger and contain more dividing TECs than wild-type littermate controls. In addition, thymic reconstitution after bone marrow transplantation occurred more rapidly in Rag2−/−Tbata−/− mice than in Rag2−/−Tbata+/+ littermate controls. These findings suggest that Tbata modulates thymus function by regulating stromal cell proliferation via the Nedd8 pathway.


2008 ◽  
Vol 284 (11) ◽  
pp. 7068-7077 ◽  
Author(s):  
Yun-Hee Youm ◽  
Hyunwon Yang ◽  
Yuxiang Sun ◽  
Roy G. Smith ◽  
Nancy R. Manley ◽  
...  

Cell Research ◽  
2004 ◽  
Vol 14 (2) ◽  
pp. 125-133
Author(s):  
Xue Ying HE ◽  
Juan LI ◽  
Xiao Ping QIAN ◽  
Wen Xian FU ◽  
Yan LI ◽  
...  

Blood ◽  
2004 ◽  
Vol 103 (3) ◽  
pp. 843-851 ◽  
Author(s):  
Mark J. Osborn ◽  
Patricia L. Ryan ◽  
Nicole Kirchhof ◽  
Angela Panoskaltsis-Mortari ◽  
Frank Mortari ◽  
...  

AbstractThe role of thymic stromal cell–derived lymphopoietin (TSLP) in regulating hematopoiesis is poorly characterized, so we investigated its regulatory effects in vivo using TSLP transgenic mice. Overexpression of TSLP disrupted hematopoietic homeostasis by causing imbalances in lymphopoiesis and myelopoiesis. Mice harboring a TSLP transgene had 5- to 700-fold fewer B and T precursors and no detectable pre-B lymphocyte colonyforming activity in the marrow or spleen. Conversely, TSLP transgenic mice possessed 15 to 20 times more splenic myeloid precursors than their littermates, and progenitor activity of the granulocyteerythrocyte-macrophage-megakaryocyte colony-forming units was significantly elevated. The arrest in lymphopoiesis and the expansion of myeloid progenitor cells in TSLP transgenic mice suggest that TSLP has negative and positive regulatory effects on lymphoid and myeloid development, respectively.


Sign in / Sign up

Export Citation Format

Share Document