Sodium sulphite inhibition of potato and cherry polyphenolics in nucleic acid extraction for virus detection by RT-PCR

2002 ◽  
Vol 99 (1-2) ◽  
pp. 123-131 ◽  
Author(s):  
R.P Singh ◽  
X Nie ◽  
M Singh ◽  
R Coffin ◽  
P Duplessis
Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 615
Author(s):  
Allen Wing-Ho Chu ◽  
Cyril Chik-Yan Yip ◽  
Wan-Mui Chan ◽  
Anthony Chin-Ki Ng ◽  
Dream Lok-Sze Chan ◽  
...  

SARS-CoV-2 RT-PCR with pooled specimens has been implemented during the COVID-19 pandemic as a cost- and manpower-saving strategy for large-scale testing. However, there is a paucity of data on the efficiency of different nucleic acid extraction platforms on pooled specimens. This study compared a novel automated high-throughput liquid-based RNA extraction (LRE) platform (PHASIFYTM) with a widely used magnetic bead-based total nucleic acid extraction (MBTE) platform (NucliSENS® easyMAG®). A total of 60 pools of nasopharyngeal swab and 60 pools of posterior oropharyngeal saliva specimens, each consisting of 1 SARS-CoV-2 positive and 9 SARS-CoV-2 negative specimens, were included for the comparison. Real-time RT-PCR targeting the SARS-CoV-2 RdRp/Hel gene was performed, and GAPDH RT-PCR was used to detect RT-PCR inhibitors. No significant differences were observed in the Ct values and overall RT-PCR positive rates between LRE and MBTE platforms (92.5% (111/120] vs 90% (108/120]), but there was a slightly higher positive rate for LRE (88.3% (53/60]) than MBTE (81.7% (49/60]) among pooled saliva. The automated LRE method is comparable to a standard MBTE method for the detection of SAR-CoV-2 in pooled specimens, providing a suitable alternative automated extraction platform. Furthermore, LRE may be better suited for pooled saliva specimens due to more efficient removal of RT-PCR inhibitors.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yoonjung Kim ◽  
Mi-Soon Han ◽  
Juwon Kim ◽  
Aerin Kwon ◽  
Kyung-A Lee

A total of 84 nasopharyngeal swab specimens were collected from 84 patients. Viral nucleic acid was extracted by three automated extraction systems: QIAcube (Qiagen, Germany), EZ1 Advanced XL (Qiagen), and MICROLAB Nimbus IVD (Hamilton, USA). Fourteen RNA viruses and two DNA viruses were detected using the Anyplex II RV16 Detection kit (Seegene, Republic of Korea). The EZ1 Advanced XL system demonstrated the best analytical sensitivity for all the three viral strains. The nucleic acids extracted by EZ1 Advanced XL showed higher positive rates for virus detection than the others. Meanwhile, the MICROLAB Nimbus IVD system was comprised of fully automated steps from nucleic extraction to PCR setup function that could reduce human errors. For the nucleic acids recovered from nasopharyngeal swab specimens, the QIAcube system showed the fewest false negative results and the best concordance rate, and it may be more suitable for detecting various viruses including RNA and DNA virus strains. Each system showed different sensitivity and specificity for detection of certain viral pathogens and demonstrated different characteristics such as turnaround time and sample capacity. Therefore, these factors should be considered when new nucleic acid extraction systems are introduced to the laboratory.


2009 ◽  
Vol 58 (9) ◽  
pp. 1168-1172 ◽  
Author(s):  
J.-N. Telles ◽  
K. Le Roux ◽  
P. Grivard ◽  
G. Vernet ◽  
A. Michault

The Chikungunya virus (CHIKV) is a member of the genus Alphavirus that is transmitted to humans by Aedes mosquitoes. In 2005 and 2006, the Indian Ocean island of La Réunion was hit with an unprecedented CHIKV fever outbreak that infected 300 000 people. In the present study, we describe the evaluation of real-time nucleic acid sequence-based amplification (RT-NASBA) for the detection of CHIKV in clinical samples. A co-extracted and co-amplified chimerical CHIKV RNA sequence was used as an internal control to eliminate false-negative results. The detection threshold of the assay was determined from quantified CHIKV-positive plasma, and estimated to be 200 copies per NASBA reaction. The specificity of the assay was determined using blast analyses and non-cross-reactivity using an O'nyong-nyong virus culture and 250 CHIKV RT-PCR-negative plasma samples. A 100 % specificity was found and no invalid result was obtained, showing the good quality of the nucleic acid extraction. The assay was then evaluated using 252 CHIKV-positive RT-PCR plasma samples. The samples were all tested positive, including those with low viral load. This evaluation showed that the RT-NASBA is a rapid (5 h from sample nucleic acid extraction to detection), sensitive, specific and reliable method for the routine diagnosis of CHIKV in clinical samples.


2020 ◽  
Vol 5 (5) ◽  
pp. 889-896 ◽  
Author(s):  
Jeffrey A SoRelle ◽  
Ithiel Frame ◽  
Alejandra Falcon ◽  
Jerin Jacob ◽  
Jennifer Wagenfuehr ◽  
...  

Abstract Background Detection of SARS-CoV-2 viral RNA is important for the diagnosis and management of COVID-19. Methods We present a clinical validation of a reverse transcription PCR (RT-PCR) assay for the SARS-CoV-2 nucleocapsid (N1) gene. Off-board lysis on an automated nucleic acid extraction system was optimized with endemic coronaviruses (OC43 and NL63). Genomic RNA and SARS-CoV-2 RNA in a recombinant viral protein coat were used as control materials and compared for recovery from nucleic acid extraction. Results Nucleic acid extraction showed decreased recovery of endemic Coronavirus in vitro transcribed RNA (NL63) compared with attenuated virus (OC43). SARS-CoV-2 RNA had more reliable recovery from extraction through amplification than genomic RNA. Recovery of genomic RNA was improved by combining lysis buffer with clinical matrix before adding RNA. The RT-PCR assay demonstrated 100% in silico sensitivity and specificity. The accuracy across samples was 100% (75 of 75). Precision studies showed 100% intra-run, inter-run, and inter-technologist concordance. The limit of detection was 264 copies per milliliter (estimated 5 copies per reaction; 35.56 mean threshold cycle value). Conclusions This SARS-CoV-2 assay demonstrates appropriate characteristics for use under an Emergency Use Authorization. Endemic coronavirus controls were useful in optimizing the extraction procedure. In the absence of live or attenuated virus, recombinant virus in a protein coat is an appropriate control specimen type for assay validation during a pandemic.


2009 ◽  
Vol 155 (1) ◽  
pp. 87-90 ◽  
Author(s):  
Thomas Bruun Rasmussen ◽  
Åse Uttenthal ◽  
Mikhayil Hakhverdyan ◽  
Sándor Belák ◽  
Philip R. Wakeley ◽  
...  

2003 ◽  
Vol 69 (8) ◽  
pp. 4618-4627 ◽  
Author(s):  
Carola Burtscher ◽  
Stefan Wuertz

ABSTRACT A PCR-based method and a reverse transcriptase PCR (RT-PCR)-based method were developed for the detection of pathogenic bacteria in organic waste, using Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and Staphylococcus aureus as model organisms. In seeded organic waste samples, detection limits of less than 10 cells per g of organic waste were achieved after one-step enrichment of bacteria, isolation, and purification of DNA or RNA before PCR or RT-PCR amplification. To test the reproducibility and reliability of the newly developed methods, 46 unseeded samples were collected from diverse aerobic (composting) facilities and anaerobic digestors and analyzed by both culture-based classical and newly developed PCR-based procedures. No false-positive but some false-negative results were generated by the PCR- or RT-PCR-based methods after one-step enrichment when compared to the classical detection methods. The results indicated that the level of activity of the tested bacteria in unseeded samples was very low compared to that of freshly inoculated cells, preventing samples from reaching the cell density required for PCR-based detection after one-step enrichment. However, for Salmonella spp., a distinct PCR product could be obtained for all 22 nonamended samples that tested positive for Salmonella spp. by the classical detection procedure when a selective two-step enrichment (20 h in peptone water at 37°C and 24 h in Rappaport Vassiliadis medium at 43°C) was performed prior to nucleic acid extraction and PCR. Hence, the classical procedure was shortened, since cell plating and further differentiation of isolated colonies can be omitted, substituted for by highly sensitive and reliable detection based on nucleic acid extraction and PCR. Similarly, 2 of the 22 samples in which Salmonella spp. were detected also tested positive for Listeria monocytogenes according to a two-step enrichment procedure followed by PCR, compared to 3 samples that tested positive when classical isolation procedures were followed. The study shows that selective two-step enrichment is useful when very low numbers of bacterial pathogens must be detected in organic waste materials, such as biosolids. There were no false-positive results derived from DNA of dead cells in the waste sample, suggesting that it is not necessary to perform RT-PCR analyses when PCR is combined with selective enrichment. Large numbers of added nontarget bacteria did not affect detection of Salmonella spp., L. monocytogenes, and Y. enterocolitica but increased the detection limit of Staphylococcus aureus from <10 to 104 CFU/g of organic waste. Overall, the detection methods developed using seeded organic waste samples from one waste treatment facility (WTF) needed to be modified for satisfactory detection of pathogens in samples from other WTFs, emphasizing the need for extensive field testing of laboratory-derived PCR protocols. A survey of 13 WTFs in Germany revealed that all facilities complied with the German Biowaste Ordinance, which mandates that the end product after anaerobic digestion or aerobic composting be free of Salmonella. In addition, all biosolids were free of L. monocytogenes, Staphylococcus aureus, and Y. enterocolitica, as evidenced by both classical and PCR-based detection methods.


Sign in / Sign up

Export Citation Format

Share Document