Long term measurements of SO2 dry deposition over vegetation and soil and comparisons with models

Author(s):  
D. Fowler ◽  
C. Flechard ◽  
R.L. Storeton-West ◽  
M.A. Sutton ◽  
K.J. Hargreaves ◽  
...  
2005 ◽  
Vol 39 (37) ◽  
pp. 7095-7105 ◽  
Author(s):  
Wanquan Ta ◽  
Chun Wei ◽  
Fahu Chen

2011 ◽  
Vol 17 (12) ◽  
pp. 3589-3607 ◽  
Author(s):  
Lucy J. Sheppard ◽  
Ian D. Leith ◽  
Toshie Mizunuma ◽  
John Neil Cape ◽  
Alan Crossley ◽  
...  

1995 ◽  
pp. 2679-2685 ◽  
Author(s):  
E. C. Spiker ◽  
R. P. Hosker ◽  
V. C. Weintraub ◽  
S. I. Sherwood

2003 ◽  
Vol 37 (21) ◽  
pp. 2941-2947 ◽  
Author(s):  
Leiming Zhang ◽  
Jeffrey R. Brook ◽  
Robert Vet

2008 ◽  
Vol 42 (22) ◽  
pp. 8345-8351 ◽  
Author(s):  
Jennifer A. Graydon ◽  
Vincent L. St. Louis ◽  
Holger Hintelmann ◽  
Steve E. Lindberg ◽  
Ken A. Sandilands ◽  
...  

2020 ◽  
Author(s):  
Pascal Wintjen ◽  
Frederik Schrader ◽  
Martijn Schaap ◽  
Burkhard Beudert ◽  
Christian Brümmer

<p>Reactive nitrogen (N<sub>r</sub>) compounds comprise essential nutrients for plants. However, a large supply of nitrogen by fertilization through atmospheric deposition may be harmful for ecosystems such as peatlands and may lead to a loss of biodiversity, soil acidification and eutrophication. In addition, nitrogen compounds may cause adverse human health impacts. Large parts of N<sub>r</sub> emissions originate from anthropogenic activities.  Emission hotspots of ΣN<sub>r</sub>, i.e. the sum of all N<sub>r</sub> compounds, are related to crop production and livestock farming (mainly through ammonia, NH<sub>3</sub>) and fossil fuel combustion by transport and industry (mainly through nitrogen oxides, NO<sub>2 </sub>and NO). Such additional amount of N<sub>r</sub> will enhance its biosphere-atmosphere exchange, affect plant health and can influence its photosynthetic capacity. Therefore, it is necessary to thoroughly estimate the nitrogen exchange between biosphere and atmosphere.</p><p>For measuring the nitrogen mixing ratios a converter for reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter) was used. The TRANC converts all reactive nitrogen compounds, except for nitrous oxide (N<sub>2</sub>O), to nitric oxide (NO) and is coupled to a fast-response chemiluminescence detector (CLD). Due to a low detection limit and a response time of about 0.3s the TRANC-CLD system can be used for flux calculation based on the eddy covariance (EC) technique. Flux losses, which are related to the experimental setup, different response characteristics and the general high reactivity of most N gases and aerosols, occur in the high frequency range. We estimated damping factors of approximately 20% with an empirical cospectral approach.</p><p>For getting a reliable prediction of ΣN<sub>r</sub> fluxes through deposition models, long-term flux measurements offer the possibility to verify the nitrogen uptake capacity and to investigate exchange characteristics of ΣN<sub>r </sub>in different ecosystems.</p><p>In this study, we compare modelled dry deposition fluxes using the deposition module DEPAC (DEPosition of Acidifying Compounds) within the chemical transport model LOTOS-EUROS (LOng Term Ozone Simulation – EURopean Operational Smog) against ΣN<sub>r</sub> flux measurements of the TRANC-CLD for a remote mixed forest site with hardly any local anthropogenic emission sources. This procedure allows to determine the background load and the natural exchange characteristics of nitrogen under low atmospheric concentrations. Therefore, the broad-scale dry deposition predicted directly by LOTOS-EUROS was compared to site-specific modelling results obtained using measured meteorological input data as well as the directly measured ΣN<sub>r</sub> fluxes. In addition, the influence of land-use weighting in LOTOS-EUROS was examined. We further compare our results to ΣN<sub>r</sub> deposition estimates obtained with canopy budget techniques. Measured ΣN<sub>r</sub> dry deposition at the site was 4.5 kg N ha<sup>-</sup><sup>1</sup> yr<sup>-</sup><sup>1</sup>, in close agreement with modelled estimates using DEPAC with measured drivers (5.2 kg N ha<sup>-</sup><sup>1</sup> yr<sup>-</sup><sup>1</sup>) and as integrated in the chemical transport model LOTOS-EUROS (5.2 kg N ha<sup>-</sup><sup>1</sup> yr<sup>-</sup><sup>1</sup> to 6.9 kg N ha<sup>-</sup><sup>1</sup> yr<sup>-</sup><sup>1</sup> depending on the weighting of land-use classes).</p><p>Our study is the first one presenting 2.5 years flux measurements of ΣN<sub>r</sub> above a remote mixed forest. Further verifications of long-term flux measurements against deposition models are useful to improve them and result in better understanding of exchange processes of ΣN<sub>r</sub>.</p>


Materials ◽  
2010 ◽  
Vol 3 (1) ◽  
pp. 216-231 ◽  
Author(s):  
Mihaela Olaru ◽  
Magdalena Aflori ◽  
Bogdana Simionescu ◽  
Florica Doroftei ◽  
Lacramioara Stratulat

1993 ◽  
Vol 23 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Patrick J. Temple ◽  
George H. Riechers ◽  
Paul R. Miller ◽  
Robert W. Lennox

A 3-year field study of the cumulative effects of ozone (O3), wet and dry acidic deposition, and soil water availability was conducted on ponderosa pine (Pinusponderosa Laws.) in the Sierra Nevada of California from 1988 to 1990. Thirty-six 2-year-old potted seedlings were placed in each of 30 chambers and exposed from May through October to three levels of O3 (charcoal-filtered (CF), nonfiltered (NF), and NF plus 1.5 times ambient O3 (NF150)); three levels of acidity in simulated rain (pH 3.5, 4.4, 5.3); two levels of dry deposition (60 or 90% filtration), and two levels of soil water availability (well watered (WW) or drought stressed (DS)). An additional six plots served as ambient air (AA) controls. One-third (432) of the trees were harvested at the end of each exposure season. Low soil water availability was the only stress factor to significantly affect growth following the first exposure season. After the second season, O3 significantly reduced foliar biomass in WW–NF150 trees, but DS seedlings did not respond to O3. After 3 years of exposure, WW–NF150 trees averaged 70% loss of 1988 needles and 48% loss of 1989 foliage. Ozone-injured seedlings compensated for these losses by increased growth of current-year needles and stems and also increased growth of fine feeder roots. Radial stem growth and coarse-root growth were significantly reduced in O3-injured trees. DS trees in NF150 chambers averaged half the needle loss of WW trees and showed no reduction in radial growth in response to O3. Rain pH and dry deposition had no direct effects on growth of ponderosa pine. These cumulative responses to interacting stresses indicate the importance of multifactorial, long-term studies to evaluate forest tree responses to atmospheric deposition.


Sign in / Sign up

Export Citation Format

Share Document