Long-term kinetics of radiocesium fixation by soils

Author(s):  
A. Konoplev ◽  
A. Bulgakov ◽  
J. Hilton ◽  
R. Comans ◽  
v. popov
Keyword(s):  
1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


2016 ◽  
Vol 22 (2) ◽  
pp. 258-263 ◽  
Author(s):  
Gábor Steinbach ◽  
Radek Kaňa

AbstractPhotosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (throughTime Controlleroffered by Olympus orExperiment Designeroffered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with theCell⊕Findersoftware was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) theCell⊕Findersoftware with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser.Cell⊕Findercan be downloaded fromhttp://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity inSynechocystissp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light.


1978 ◽  
Vol 18 (10) ◽  
pp. 500-508 ◽  
Author(s):  
DAVID T. LOWENTHAL ◽  
GADDO ONESTI ◽  
ROBERT MUTTERPERL ◽  
MELTON APFRIME ◽  
EDUARDO W. MARTINEZ ◽  
...  

2011 ◽  
Vol 63 (8) ◽  
pp. 1629-1637 ◽  
Author(s):  
N. Harouiya ◽  
S. Martin Rue ◽  
S. Prost-Boucle ◽  
A. Liénar ◽  
D. Esser ◽  
...  

Phosphorus (P) removals in constructed wetlands (CWs) have received particular attention in recent decades by using specific materials which promote adsorption/precipitation mechanisms. Recent studies have shown interest in using apatite materials to promote P precipitation onto the particle surface. As previous trials were mainly done by lab experiments, this present study aims to evaluate the real potential of apatites to remove P from wastewater in pilot units and a full-scale plant over a 2 year period. P retention kinetics of two qualities of apatites are presented and discussed. In this work apatite appears to have high retention capacity (>80% of P removal) and is still an interesting way for P removal in CWs for limiting the risk of eutrophication downstream of small communities. Nevertheless, the apatite quality appears to be of great importance for a reliable and long term P removal. The use of materials with low content of apatite mineral (40–50%) seems to be not economically relevant.


2001 ◽  
Vol 79 (1-2) ◽  
pp. 117-125
Author(s):  
Qiming Yu ◽  
Pairat Kaewsarn ◽  
Weidong Ma

2021 ◽  
Vol 12 ◽  
Author(s):  
Tiandan Xiang ◽  
Boyun Liang ◽  
Yaohui Fang ◽  
Sihong Lu ◽  
Sumeng Li ◽  
...  

Major advances have been made in understanding the dynamics of humoral immunity briefly after the acute coronavirus disease 2019 (COVID-19). However, knowledge concerning long-term kinetics of antibody responses in convalescent patients is limited. During a one-year period post symptom onset, we longitudinally collected 162 samples from 76 patients and quantified IgM and IgG antibodies recognizing the nucleocapsid (N) protein or the receptor binding domain (RBD) of the spike protein (S). After one year, approximately 90% of recovered patients still had detectable SARS-CoV-2-specific IgG antibodies recognizing N and RBD-S. Intriguingly, neutralizing activity was only detectable in ~43% of patients. When neutralization tests against the E484K-mutated variant of concern (VOC) B.1.351 (initially identified in South Africa) were performed among patients who neutralize the original virus, the capacity to neutralize was even further diminished to 22.6% of donors. Despite declining N- and S-specific IgG titers, a considerable fraction of recovered patients had detectable neutralizing activity one year after infection. However, neutralizing capacities, in particular against an E484K-mutated VOC were only detectable in a minority of patients one year after symptomatic COVID-19. Our findings shed light on the kinetics of long-term immune responses after natural SARS-CoV-2 infection and argue for vaccinations of individuals who experienced a natural infection to protect against emerging VOC.


2021 ◽  
Author(s):  
Tiago DG Nunes ◽  
Magdalena W Slawinska ◽  
Heike Lindner ◽  
Michael T Raissig

Stomata are cellular pores on the leaf epidermis that allow plants to regulate carbon assimilation and water loss. Stomata integrate environmental signals to regulate pore apertures and optimize gas exchange to fluctuating conditions. Here, we quantified intraspecific plasticity of stomatal gas exchange and anatomy in response to seasonal variation in Brachypodium distachyon. Over the course of two years we (i) used infrared gas analysis to assess light response kinetics of 120 Bd21-3 wild-type individuals in an environmentally fluctuating greenhouse and (ii) microscopically determined the seasonal variability of stomatal anatomy in a subset of these plants. We observed systemic environmental effects on gas exchange measurements and remarkable intraspecific plasticity of stomatal anatomical traits. To reliably link anatomical variation to gas exchange, we adjusted anatomical gsmax calculations for grass stomatal morphology. We propose that systemic effects and variability in stomatal anatomy should be accounted for in long-term gas exchange studies.


Sign in / Sign up

Export Citation Format

Share Document