Role of pups' ultrasonic calls in a particular maternal behavior in Wistar rat: pups' anogenital licking

1992 ◽  
Vol 50 (1-2) ◽  
pp. 147-154 ◽  
Author(s):  
I. Brouette-Lahlou ◽  
E. Vernet-Maury ◽  
M. Vigouroux
2021 ◽  
Vol 19 (3) ◽  
pp. 303-312
Author(s):  
Vladimir A. Sizonov ◽  
Ludmila E. Dmitrieva ◽  
Sergey V. Kuznetsov

Interaction of slow-wave rhythmic components of cardiac, respiratory and motor activities was analyzed in non-narcotized of newborn 1-day-old (P1) and 16-day-old (P16) Wistar rat pups under normal and impaired cholinergic regulation. Functional activity of these three systems is rhythmic, and coordination of their functioning is an important element of the mechanism of adaptive rearrangements under changing factors of the external and internal environment. The acetylcholinesterase inhibitor physostigmine (eserine) was used to increase the level of endogenous acetylcholine and enhance cholinergic effects. To reveal the role of N-cholinoreceptors in intersystemic somatovisceral interactions (ISI), we performed blockade of this receptor type with benzohexonium. Administration of physostigmine leads to the development of a number of pathological reactions and a decrease in the level of ISI in all ranges of modulating rhythms in rats of both ages. ISI in younger rats appear to be more resistant to changes in the level of cholinergic activation. Blockade of N-cholinoreceptors causes inhibition of ISI at P1 and partially to their potentialization at P16. The activation of cholinoreactive structures, which occurred against the background of cholinoreceptors blockade, reduces the pathological effects of physostigmine in animals of both ages, but at the same time leads to an attenuation of ISI. This weakening is more pronounced in 16-day old rats, which may indicate the formation of the definitive level of cholinergic regulation in the first weeks of postnatal ontogenesis.


2016 ◽  
Vol 150 (4) ◽  
pp. S629
Author(s):  
Nabila Moussaoui ◽  
Muriel H. Larauche ◽  
Mandy Biraud ◽  
Jenny Molet ◽  
Mulugeta Million ◽  
...  

1973 ◽  
Vol 52 (4) ◽  
pp. 680-687 ◽  
Author(s):  
Lewis Menaker ◽  
Juan M. Navia

The specific role of protein deficiency in altering dental caries incidence in rat pups was investigated. A 10% protein supplement given to undernourished rats during development allowed them to overcome weight deficiencies and reversed dental caries to the low incidence found in well-nourished control rats. Caries in undernourished rats supplemented with an isocaloric, proteinfree solution, was as high as that of undernourished rats intubated with distilled water.


1991 ◽  
Vol 49 (6) ◽  
pp. 1279-1282 ◽  
Author(s):  
S.E. Carden ◽  
M.A. Hofer
Keyword(s):  

2018 ◽  
Vol 46 (4) ◽  
pp. 433-439 ◽  
Author(s):  
Felipe Kawa Odorcyk ◽  
Janaína Kolling ◽  
Eduardo Farias Sanches ◽  
Angela T.S. Wyse ◽  
Carlos Alexandre Netto

Abstract Neonatal hypoxia ischemia (HI) is the main cause of mortality and morbidity in newborns. The mechanisms involved in its progression start immediately and persist for several days. Oxidative stress and inflammation are determinant factors of the severity of the final lesion. The spleen plays a major part in the inflammatory response to HI. This study assessed the temporal progression of HI-induced alterations in oxidative stress parameters in the hippocampus, the most affected brain structure, and in the spleen. HI was induced in Wistar rat pups in post-natal day 7. Production of reactive oxygen species (ROS), and the activity of the anti oxidant enzyme superoxide dismutase and catalase were assessed 24 h, 96 h and 38 days post-HI. Interestingly, both structures showed a similar pattern, with few alterations in the production of ROS species up to 96 h often combined with an increased activity of the anti oxidant enzymes. However, 38 days after the injury, ROS were at the highest in both structures, coupled with a decrease in the activity of the enzymes. Altogether, present results suggest that HI causes long lasting alterations in the hippocampus as well as in the spleen, suggesting a possible target for delayed treatments for HI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gary P. Brennan ◽  
Megan M. Garcia-Curran ◽  
Katelin P. Patterson ◽  
Renhao Luo ◽  
Tallie Z. Baram

Background and Rationale: Bi-directional neuronal-glial communication is a critical mediator of normal brain function and is disrupted in the epileptic brain. The potential role of aberrant microglia and astrocyte function during epileptogenesis is important because the mediators involved provide tangible targets for intervention and prevention of epilepsy. Glial activation is intrinsically involved in the generation of childhood febrile seizures (FS), and prolonged FS (febrile status epilepticus, FSE) antecede a proportion of adult temporal lobe epilepsy (TLE). Because TLE is often refractory to treatment and accompanied by significant memory and emotional difficulties, we probed the role of disruptions of glial-neuronal networks in the epileptogenesis that follows experimental FSE (eFSE).Methods: We performed a multi-pronged examination of neuronal-glia communication and the resulting activation of molecular signaling cascades in these cell types following eFSE in immature mice and rats. Specifically, we examined pathways involving cytokines, microRNAs, high mobility group B-1 (HMGB1) and the prostaglandin E2 signaling. We aimed to block epileptogenesis using network-specific interventions as well as via a global anti-inflammatory approach using dexamethasone.Results: (A) eFSE elicited a strong inflammatory response with rapid and sustained upregulation of pro-inflammatory cytokines. (B) Within minutes of the end of the eFSE, HMGB1 translocated from neuronal nuclei to dendrites, en route to the extracellular space and glial Toll-like receptors. Administration of an HMGB1 blocker to eFSE rat pups did not decrease expression of downstream inflammatory cascades and led to unacceptable side effects. (C) Prolonged seizure-like activity caused overall microRNA-124 (miR-124) levels to plunge in hippocampus and release of this microRNA from neurons via extra-cellular vesicles. (D) Within hours of eFSE, structural astrocyte and microglia activation was associated not only with cytokine production, but also with activation of the PGE2 cascade. However, administration of TG6-10-1, a blocker of the PGE2 receptor EP2 had little effect on spike-series provoked by eFSE. (E) In contrast to the failure of selective interventions, a 3-day treatment of eFSE–experiencing rat pups with the broad anti-inflammatory drug dexamethasone attenuated eFSE-provoked pro-epileptogenic EEG changes.Conclusions: eFSE, a provoker of TLE-like epilepsy in rodents leads to multiple and rapid disruptions of interconnected glial-neuronal networks, with a likely important role in epileptogenesis. The intricate, cell-specific and homeostatic interplays among these networks constitute a serious challenge to effective selective interventions that aim to prevent epilepsy. In contrast, a broad suppression of glial-neuronal dysfunction holds promise for mitigating FSE-induced hyperexcitability and epileptogenesis in experimental models and in humans.


1984 ◽  
Vol 247 (2) ◽  
pp. E243-E250
Author(s):  
G. Evoniuk ◽  
C. Kuhn ◽  
S. Schanberg

We have shown previously that short-term nutritional deprivation causes a tissue-specific loss of liver ornithine decarboxylase (ODC) induction after isoproterenol, phenylephrine, or glucagon administration in rat pups. To examine the role of nutrition in the regulation of hepatic ODC, we tested the ability of intragastric nutrient administration to reverse nutritionally related deficits in the ODC response to hormonal challenge. Intragastric whole milk was effective in restoring ODC induction and accumulation of its immediate product, putrescine, in response to isoproterenol administration. Glucose was shown to mediate this effect by the ability of intragastric skimmed milk, lactose, galactose, or D-glucose to return ODC induction, and the inability of casein, sucrose, fructose, L-glucose, or pyruvate plus lactate to do so. D-Glucose also reestablished ODC induction by phenylephrine and glucagon. Parenteral administration of D-glucose produced results comparable to those obtained after intragastric administration. Isoproterenol induction of ODC was prevented when hepatic glucose uptake was blocked by phlorizin but not by blockade of central nervous system glucose uptake with 2-deoxyglucose. We conclude that intrahepatic glucose is an absolute requirement for hepatic ODC induction by isoproterenol, phenylephrine, or glucagon in preweanling rats.


2020 ◽  
Vol 7 ◽  
pp. 492-500
Author(s):  
Neelu Singh ◽  
Monoj Kumar Das ◽  
Anand Ramteke ◽  
Paulraj R.

Sign in / Sign up

Export Citation Format

Share Document