scholarly journals Multiple Disruptions of Glial-Neuronal Networks in Epileptogenesis That Follows Prolonged Febrile Seizures

2021 ◽  
Vol 12 ◽  
Author(s):  
Gary P. Brennan ◽  
Megan M. Garcia-Curran ◽  
Katelin P. Patterson ◽  
Renhao Luo ◽  
Tallie Z. Baram

Background and Rationale: Bi-directional neuronal-glial communication is a critical mediator of normal brain function and is disrupted in the epileptic brain. The potential role of aberrant microglia and astrocyte function during epileptogenesis is important because the mediators involved provide tangible targets for intervention and prevention of epilepsy. Glial activation is intrinsically involved in the generation of childhood febrile seizures (FS), and prolonged FS (febrile status epilepticus, FSE) antecede a proportion of adult temporal lobe epilepsy (TLE). Because TLE is often refractory to treatment and accompanied by significant memory and emotional difficulties, we probed the role of disruptions of glial-neuronal networks in the epileptogenesis that follows experimental FSE (eFSE).Methods: We performed a multi-pronged examination of neuronal-glia communication and the resulting activation of molecular signaling cascades in these cell types following eFSE in immature mice and rats. Specifically, we examined pathways involving cytokines, microRNAs, high mobility group B-1 (HMGB1) and the prostaglandin E2 signaling. We aimed to block epileptogenesis using network-specific interventions as well as via a global anti-inflammatory approach using dexamethasone.Results: (A) eFSE elicited a strong inflammatory response with rapid and sustained upregulation of pro-inflammatory cytokines. (B) Within minutes of the end of the eFSE, HMGB1 translocated from neuronal nuclei to dendrites, en route to the extracellular space and glial Toll-like receptors. Administration of an HMGB1 blocker to eFSE rat pups did not decrease expression of downstream inflammatory cascades and led to unacceptable side effects. (C) Prolonged seizure-like activity caused overall microRNA-124 (miR-124) levels to plunge in hippocampus and release of this microRNA from neurons via extra-cellular vesicles. (D) Within hours of eFSE, structural astrocyte and microglia activation was associated not only with cytokine production, but also with activation of the PGE2 cascade. However, administration of TG6-10-1, a blocker of the PGE2 receptor EP2 had little effect on spike-series provoked by eFSE. (E) In contrast to the failure of selective interventions, a 3-day treatment of eFSE–experiencing rat pups with the broad anti-inflammatory drug dexamethasone attenuated eFSE-provoked pro-epileptogenic EEG changes.Conclusions: eFSE, a provoker of TLE-like epilepsy in rodents leads to multiple and rapid disruptions of interconnected glial-neuronal networks, with a likely important role in epileptogenesis. The intricate, cell-specific and homeostatic interplays among these networks constitute a serious challenge to effective selective interventions that aim to prevent epilepsy. In contrast, a broad suppression of glial-neuronal dysfunction holds promise for mitigating FSE-induced hyperexcitability and epileptogenesis in experimental models and in humans.

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Swapna Upadhyay ◽  
Madhulika Dixit

Optimized nutrition through supplementation of diet with plant derived phytochemicals has attracted significant attention to prevent the onset of many chronic diseases including cardiovascular impairments, cancer, and metabolic disorder. These phytonutrients alone or in combination with others are believed to impart beneficial effects and play pivotal role in metabolic abnormalities such as dyslipidemia, insulin resistance, hypertension, glucose intolerance, systemic inflammation, and oxidative stress. Epidemiological and preclinical studies demonstrated that fruits, vegetables, and beverages rich in carotenoids, isoflavones, phytoestrogens, and phytosterols delay the onset of atherosclerosis or act as a chemoprotective agent by interacting with the underlying pathomechanisms. Phytochemicals exert their beneficial effects either by reducing the circulating levels of cholesterol or by inhibiting lipid oxidation, while others exhibit anti-inflammatory and antiplatelet activities. Additionally, they reduce neointimal thickening by inhibiting proliferation of smooth muscle cells and also improve endothelium dependent vasorelaxation by modulating bioavailability of nitric-oxide and voltage-gated ion channels. However, detailed and profound knowledge on specific molecular targets of each phytochemical is very important to ensure safe use of these active compounds as a therapeutic agent. Thus, this paper reviews the active antioxidative, antiproliferative, anti-inflammatory, or antiangiogenesis role of various phytochemicals for prevention of chronic diseases.


2017 ◽  
Vol 11 ◽  
pp. 117906951770466 ◽  
Author(s):  
Nombuso Valencia Pearl Mkhize ◽  
Lihle Qulu ◽  
Musa Vuyisile Mabandla

Febrile seizures are childhood convulsions resulting from an infection that leads to an inflammatory response and subsequent convulsions. Prenatal stress has been shown to heighten the progression and intensity of febrile seizures. Current medications are costly and have adverse effects associated with prolonged use. Quercetin flavonoid exhibits anti-inflammatory, anti-convulsant, and anti-stress effects. This study was aimed to investigate the therapeutic effect of quercetin in a prenatally stressed rat model of febrile seizures. We hypothesized that quercetin will alleviate the effects of prenatal stress in a febrile seizure rat model. On gestational day 13, Sprague-Dawley rat dams were subjected to restraint stress for 1 hour/d for 7 days. Febrile seizures were induced on postnatal day 14 on rat pups by intraperitoneally injecting lipopolysaccharide followed by kainic acid and quercetin on seizure onset. Hippocampal tissue was harvested to profile cytokine concentrations. Our results show that quercetin suppresses prenatal stress–induced pro-inflammatory marker (interleukin 1 beta) levels, subsequently attenuating febrile seizures. This shows that quercetin can be therapeutic for febrile seizures in prenatally stressed individuals.


2016 ◽  
Author(s):  
Daniele Lana

Neurodegenerative processes alter neuronal and glial physiology and cause cognitive and mnemonic impairments. Aim of this PhD thesis is to investigate the involvement of the cholinergic system and the role of mTOR pathway in the mechanisms of memory encoding in the hippocampus and to study the pathophysiological processes at the base of the cognitive impairments in different experimental models of neurodegeneration: in particular normal brain aging, neuroinfiammation and chronic cerebral hypoperfusion. These mechanisms are studied focusing on the morpho-functional alterations in the neuron-astrocytemicroglia triad.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoyu Sun ◽  
Jike Gao ◽  
Xiang Meng ◽  
Xiaoxuan Lu ◽  
Lei Zhang ◽  
...  

Periodontitis (PD) is a common chronic infectious disease. The local inflammatory response in the host may cause the destruction of supporting periodontal tissue. Macrophages play a variety of roles in PD, including regulatory and phagocytosis. Moreover, under the induction of different factors, macrophages polarize and form different functional phenotypes. Among them, M1-type macrophages with proinflammatory functions and M2-type macrophages with anti-inflammatory functions are the most representative, and both of them can regulate the tendency of the immune system to exert proinflammatory or anti-inflammatory functions. M1 and M2 macrophages are involved in the destructive and reparative stages of PD. Due to the complex microenvironment of PD, the dynamic development of PD, and various local mediators, increasing attention has been given to the study of macrophage polarization in PD. This review summarizes the role of macrophage polarization in the development of PD and its research progress.


2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
J. Stefanska ◽  
R. Pawliczak

Apocynin is a naturally occurring methoxy-substituted catechol, experimentally used as an inhibitor of NADPH-oxidase. It can decrease the production of superoxide (O2−) from activated neutrophils and macrophages while the ability of phagocytosis remains unaffected. The anti-inflammatory activity of apocynin has been demonstrated in a variety of cell and animal models of inflammation. Apocynin, after metabolic conversion, inhibits the assembly of NADPH-oxidase that is responsible for reactive oxygen species (ROS) production. It is, therefore, extensively used to reveal the role of this enzyme in cell and experimental models. Although some of the ROS serve as signaling molecules in the cells, excessive production is damaging and has been implicated to play an important role in the progression of many disease processes. This is why in many studies apocynin presents a promising potential treatment for some disorders; however, its utility with inflammatory diseases remains to be determined. Since its mode of action is not well defined, we tried to get a more precise insight into the mechanisms by which apocynin exerts its activity. Considering the anti-inflammatory activities of apocynin, we may conclude that this compound definitely deserves further study.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edgar Ramos-Martinez ◽  
Ivan Ramos-Martínez ◽  
Gladys Molina-Salinas ◽  
Wendy A. Zepeda-Ruiz ◽  
Marco Cerbon

Abstract Prolactin has been shown to favor both the activation and suppression of the microglia and astrocytes, as well as the release of inflammatory and anti-inflammatory cytokines. Prolactin has also been associated with neuronal damage in diseases such as multiple sclerosis, epilepsy, and in experimental models of these diseases. However, studies show that prolactin has neuroprotective effects in conditions of neuronal damage and inflammation and may be used as neuroprotector factor. In this review, we first discuss general information about prolactin, then we summarize recent findings of prolactin function in inflammatory and anti-inflammatory processes and factors involved in the possible dual role of prolactin are described. Finally, we review the function of prolactin specifically in the central nervous system and how it promotes a neuroprotective effect, or that of neuronal damage, particularly in experimental autoimmune encephalomyelitis and during excitotoxicity. The overall studies indicated that prolactin may be a promising molecule for the treatment of some neurological diseases.


Author(s):  
Amos O. Abolaji ◽  
Marvis U. Omozokpia ◽  
Olajide J. Oluwamuyide ◽  
Temidayo E. Akintola ◽  
Ebenezer O. Farombi

AbstractBackgroundThe ovotoxicity of 4-vinylcyclohexene diepoxide (VCD) has been established in several experimental models. Hesperidin (HSD) is a bi-flavonoid found in citrus fruits and has been reported to be a potent antioxidant and anti-inflammatory agent. Here, we have evaluated the rescue role of hesperidin on VCD-induced toxicity in the brain, ovary, and uterus of rats.MethodsSix groups of rats containing ten rats in each group were orally given corn oil (control), hesperidin (100 mg/kg), hesperidin (200 mg/kg), VCD (250 mg/kg), VCD [(250 mg/kg)+hesperidin (100 mg/kg)] and VCD [(250 mg/kg)+hesperidin (200 mg/kg)] once a day for 30 days, respectively. Thereafter, we determined the selected biomarkers of oxidative damage, inflammation, endocrine balance, and histology of the reproductive organs.ResultsThe data showed that hesperidin rescued VCD-induced increase in oxidative stress (hydrogen peroxide and malondialdehyde) and inflammatory (nitric oxide) biomarkers. In addition, hesperidin restored the reduction in antioxidant enzymes (catalase, glutathione S-transferase, glutathione peroxidase) activities and glutathione level in the brain, ovary, and uterus of rats (p<0.05). Lastly, hesperidin preserved the histological structure of the ovary and uterus of rats exposed to VCD.ConclusionsOverall, the rescue role of hesperidin on VCD-induced toxicity in the brain and reproductive organs of female rats may be due to its antioxidative and anti-inflammatory properties.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Bolin Cai ◽  
Edwin A. Deitch ◽  
Luis Ulloa

The inflammatory responses in sepsis and hemorrhage remain a major cause of death. Clinically, it is generally accepted that shock in sepsis or hemorrhage differs in its mechanisms. However, the recognition of inflammatory cytokines as a common lethal pathway has become consent. Proinflammatory cytokines such as tumor necrosis factor (TNF) or high-mobility group box1 (HMGB1) are fanatically released and cause lethal multiorgan dysfunction. Inhibition of these cytokines can prevent the inflammatory responses and organ damage. In seeking potential anti-inflammatory strategies, we reported that ethyl pyruvate and alpha7 nicotinic acetylcholine receptor (alpha7nAChR) agonists effectively restrained cytokine production to provide therapeutic benefits in both experimental sepsis and hemorrhage. Here, we review the inflammatory responses and the anti-inflammatory strategies in experimental models of sepsis and hemorrhage, as they may have a consistent inflammatory pathway in spite of their different pathophysiological processes.


Folia Medica ◽  
2014 ◽  
Vol 56 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Ilia D. Kostadinov ◽  
Delian P. Delev ◽  
Marianna A. Murdjeva ◽  
Ivanka I. Kostadinova

ABSTRACT INTRODUCTION: Fluoxetine is an antidepressant that has anti-inflammatory and antihyperalgesic effects in experimental models of pain and inflammation. The AIM of the present study was to determine the role of 5-HT2 receptors in the mechanism of anti-inflammatory and antihyperalgesic action of fluoxetine after single and repeated administration of the drug. MATERIALS AND METHODS: 40 male Wistar rats were randomly divided in five groups (n = 8) treated for 14 days with saline (control), diclofenac (positive control), fluoxetine, cyproheptadine (5-HT2 antagonist), and fluoxetine + cyproheptadine, respectively. We used the experimental model of inflammation induced by intraplantar injection of carrageenan and nociceptive test with mechanical pressure on the inflamed hind paw. RESULTS: Single and repeated administration of fluoxetine showed that it had significant anti-inflammatory and antihyperalgesic effects when compared with the control (p < 0.05). Cyproheptadine did not change significantly the anti-inflammatory effect of fluoxetine in the first 4 hours, after a single administration. At 24 hours the combination did not differ statistically when compared with the control. Cyproheptadin did not change significantly the anti-inflammatory effect of fluoxetine after repeated administration. After prolonged treatment the group that received fluoxetine + cyproheptadine showed a statistically significant increase in paw pressure to withdraw the hind paw compared with that treated with fluoxetine alone (p < 0.05). CONCLUSIONS: Fluoxetine has anti-inflammatory and antihyperalgesic effects in the carrageenan model of inflammation. 5-HT2 receptor mediated its anti-inflammatory effect in single dose treated animals. Spinal 5-HT2 receptors are involved in the antihyperalgesic effect of fluoxetine after repeated administration


Sign in / Sign up

Export Citation Format

Share Document