Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements

2001 ◽  
Vol 43 (3) ◽  
pp. 153-164 ◽  
Author(s):  
W.William Wilson ◽  
Mary Margaret Wade ◽  
Steven C. Holman ◽  
Franklin R. Champlin
2012 ◽  
Vol 11 ◽  
pp. S69
Author(s):  
M. Pritchard ◽  
L. Powell ◽  
I. Doull ◽  
K.E. Hill ◽  
E. Onsøyen ◽  
...  

2016 ◽  
Vol 7 (3) ◽  
pp. 2023-2029 ◽  
Author(s):  
Chelsea Catania ◽  
Alexander W. Thomas ◽  
Guillermo C. Bazan

Conjugated oligoelectrolytes intercalate into and associate with membranes, thereby changing the surface charge of microbes, as determined by zeta potential measurements.


2011 ◽  
Vol 78 (1) ◽  
pp. 120-125 ◽  
Author(s):  
Brandon W. Peterson ◽  
Prashant K. Sharma ◽  
Henny C. van der Mei ◽  
Henk J. Busscher

ABSTRACTCentrifugal damage has been known to alter bacterial cell surface properties and interior structures, including DNA. Very few studies exist on bacterial damage caused by centrifugation because of the difficulty in relating centrifugation speed and container geometry to the damage caused. Here, we provide a simple, versatile method of analysis for describing the compaction of bacteria during centrifugation based on a proposed centrifugation coefficient,C. Values ofCcan be related to different bacterial cell surface properties. Changing the geometry of the centrifugation container or centrifugation speeds changed the value ofCsignificantly. Initial deposition rates ofStaphylococcus aureusATCC 12600 to a glass surface decayed exponentially from 4,217 to 1,478 cm−2s−1with increasingC, while the proportion of staphylococci with a zeta potential of around −15 mV decreased from 97 to 58%. These surface-sensitive parameters were used independently to derive a critical centrifugation coefficient (0.040), above which centrifugation was considered to impact the outcome of surface-sensitive experiments due to cell surface damage. The critical centrifugation coefficient could successfully predict staphylococcal cell surface damage, i.e., a significant change in initial deposition rate or zeta potential distribution, in 84% of all cases included here, whereas the centrifugation speed could predict damage in only 58% of all cases. Moreover, controlling the centrifugation coefficient within narrow limits over a series of experiments yielded 43% smaller standard deviations in initial staphylococcal deposition rates than with centrifugation at fixed speeds for replicate experiments.


2018 ◽  
Author(s):  
Wenfa Ng

Proteins and metabolites typically adsorb to bacterial cell surface through a variety of mechanisms such as van der Waals attraction and electrostatic interactions, and forms a layer of nonspecifically adsorbed ions and molecules on the cell surface. Thus, the bacterial cell surface charge comprised the contribution from the cell wall as well as layers of nonspecifically adsorbed ions and molecules on the cell surface. This is the cell surface charge perceived by other bacterial cells in the growth medium. Given that different growth medium comprises different ensemble of proteins and metabolites that could adsorb onto the cell surface of bacteria, it is important to examine the effect of growth in different medium on the cell surface characteristics of bacterial cells using zeta potential as the proxy parameter. Defined at the shear plane, zeta potential provides a comprehensive view of the cell surface charge that include the nonspecifically adsorbed ions and molecules on the cell surface and the intrinsic electric charges in the cell wall. Using Escherichia coli DH5α (ATCC 53868) as model organism, experiments performed with deionized water as wash and resuspension buffer revealed that the zeta potential-pH profiles of cells grown in LB Lennox, and LB Lennox with 2 g/L glucose overlapped each other over the entire pH range from 2 to 9. This suggested that there was little physiological adaptation of the cell envelope of cells grown in LB Lennox supplemented with 2 g/L glucose, which indicated that the medium could be used for increasing biomass yield without affecting cell surface characteristics. Similarly, the zeta potential-pH profiles of E. coli DH5α grown in LB Lennox and LB Lennox buffered with 89 mM potassium hydrogen phosphate buffer also overlapped each other, which highlighted that the buffered medium did not elicit physiological adaptation of the cell envelope. However, supplementation of the LB Lennox (buffered) medium with 6 g/L glucose resulted in a more negatively charged zeta potential-pH profile in the pH range from 4 to 12 compared to that during growth in LB Lennox. Growth of E. coli DH5α in other media such as Tryptic Soy Broth (TSB), formulated medium, and formulated medium with 6 g/L glucose also resulted in more negatively charged zeta potential-pH profiles compared to that during growth in LB Lennox medium. However, the point-of-zero-charge (pHzpc) of cells grown in TSB and formulated medium were the same as that of cells grown in LB Lennox medium. Collectively, physiological adaptation to growth in different media as well as different ensemble of proteins and metabolites nonspecifically adsorbed to the cell surface would generally result in different zeta potential-pH profiles of bacteria cultivated in growth media of different compositions. Understanding the cell surface charge characteristics of E. coli DH5α grown in different media would thus help unveil the mysteries of cell-cell interactions in the medium.


2018 ◽  
Author(s):  
Wenfa Ng

Proteins and metabolites typically adsorb to bacterial cell surface through a variety of mechanisms such as van der Waals attraction and electrostatic interactions, and forms a layer of nonspecifically adsorbed ions and molecules on the cell surface. Thus, the bacterial cell surface charge comprised the contribution from the cell wall as well as layers of nonspecifically adsorbed ions and molecules on the cell surface. This is the cell surface charge perceived by other bacterial cells in the growth medium. Given that different growth medium comprises different ensemble of proteins and metabolites that could adsorb onto the cell surface of bacteria, it is important to examine the effect of growth in different medium on the cell surface characteristics of bacterial cells using zeta potential as the proxy parameter. Defined at the shear plane, zeta potential provides a comprehensive view of the cell surface charge that include the nonspecifically adsorbed ions and molecules on the cell surface and the intrinsic electric charges in the cell wall. Using Escherichia coli DH5α (ATCC 53868) as model organism, experiments performed with deionized water as wash and resuspension buffer revealed that the zeta potential-pH profiles of cells grown in LB Lennox, and LB Lennox with 2 g/L glucose overlapped each other over the entire pH range from 2 to 9. This suggested that there was little physiological adaptation of the cell envelope of cells grown in LB Lennox supplemented with 2 g/L glucose, which indicated that the medium could be used for increasing biomass yield without affecting cell surface characteristics. Similarly, the zeta potential-pH profiles of E. coli DH5α grown in LB Lennox and LB Lennox buffered with 89 mM potassium hydrogen phosphate buffer also overlapped each other, which highlighted that the buffered medium did not elicit physiological adaptation of the cell envelope. However, supplementation of the LB Lennox (buffered) medium with 6 g/L glucose resulted in a more negatively charged zeta potential-pH profile in the pH range from 4 to 12 compared to that during growth in LB Lennox. Growth of E. coli DH5α in other media such as Tryptic Soy Broth (TSB), formulated medium, and formulated medium with 6 g/L glucose also resulted in more negatively charged zeta potential-pH profiles compared to that during growth in LB Lennox medium. However, the point-of-zero-charge (pHzpc) of cells grown in TSB and formulated medium were the same as that of cells grown in LB Lennox medium. Collectively, physiological adaptation to growth in different media as well as different ensemble of proteins and metabolites nonspecifically adsorbed to the cell surface would generally result in different zeta potential-pH profiles of bacteria cultivated in growth media of different compositions. Understanding the cell surface charge characteristics of E. coli DH5α grown in different media would thus help unveil the mysteries of cell-cell interactions in the medium.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1519
Author(s):  
Leixin Ouyang ◽  
Rubia Shaik ◽  
Ruiting Xu ◽  
Ge Zhang ◽  
Jiang Zhe

Many bio-functions of cells can be regulated by their surface charge characteristics. Mapping surface charge density in a single cell’s surface is vital to advance the understanding of cell behaviors. This article demonstrates a method of cell surface charge mapping via electrostatic cell–nanoparticle (NP) interactions. Fluorescent nanoparticles (NPs) were used as the marker to investigate single cells’ surface charge distribution. The nanoparticles with opposite charges were electrostatically bonded to the cell surface; a stack of fluorescence distribution on a cell’s surface at a series of vertical distances was imaged and analyzed. By establishing a relationship between fluorescent light intensity and number of nanoparticles, cells’ surface charge distribution was quantified from the fluorescence distribution. Two types of cells, human umbilical vein endothelial cells (HUVECs) and HeLa cells, were tested. From the measured surface charge density of a group of single cells, the average zeta potentials of the two types of cells were obtained, which are in good agreement with the standard electrophoretic light scattering measurement. This method can be used for rapid surface charge mapping of single particles or cells, and can advance cell-surface-charge characterization applications in many biomedical fields.


2021 ◽  
Author(s):  
Lilin Feng ◽  
Liang Gao ◽  
Daniel F. Sauer ◽  
Yu Ji ◽  
Haiyang Cui ◽  
...  

A facile and reversible method to immobilize His6-tagged proteins on the E. coli cell surface through the formation of an Fe(iii)-complex.


2016 ◽  
Vol 83 ◽  
pp. 548-558 ◽  
Author(s):  
Debasis Mandal ◽  
Sandeep Kumar Dash ◽  
Balaram Das ◽  
Sourav Chattopadhyay ◽  
Totan Ghosh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document