scholarly journals On the role of metal cations in cellular adhesion: Effect on cell surface charge

1966 ◽  
Vol 163 (1) ◽  
pp. 99-109 ◽  
Author(s):  
Peter B. Armstrong
1995 ◽  
Vol 67 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Joseph R. V. Flora ◽  
Makram T. Suidan ◽  
Pratim Biswas ◽  
Gregory D. Sayles

2016 ◽  
Vol 60 (10) ◽  
pp. 5716-5723 ◽  
Author(s):  
Ashley D. Hall Snyder ◽  
Brian J. Werth ◽  
Poochit Nonejuie ◽  
John P. McRoberts ◽  
Joe Pogliano ◽  
...  

ABSTRACTDaptomycin (DAP) is being used more frequently to treat infections caused by vancomycin-resistant enterococcus (VRE). DAP tends to be less active against enterococci than staphylococci and may require high doses or combination therapy to be bactericidal. Fosfomycin (FOF) has activity against VRE and has demonstrated synergistic bactericidal activity with DAPin vitro. The objective of this study was to evaluate the activity of DAP alone and in combination with FOF against VRE in anin vitropharmacokinetic/pharmacodynamic (PK/PD) model. The activity of DAP at 8 and 12 mg/kg of body weight/day (DAP 8 and DAP 12, respectively) and FOF of 40 mg/kg intravenously every 8 h, alone and in combination, were evaluated against 2 vancomycin-resistantEnterococcus faeciumstrains (8019 and 5938) and 2 vancomycin-resistantE. faecalisstrains (V583 and R7302) in anin vitroPK/PD model over 72 h. Cell surface charge in the presence and absence of FOF was evaluated by zeta potential analysis. Daptomycin-boron-dipyrromethene (bodipy) binding was assessed by fluorescence microscopy. The addition of FOF to DAP 8 and DAP 12 resulted in significantly increased killing over DAP alone at 72 h for 8019, V583, and R7302 (P< 0.05). Therapeutic enhancement was observed with DAP 12 plus FOF against 8019, V583, and R7302. Cell surface charge became more negative after exposure to FOF by ∼2 to 8mV in all 4 strains. Daptomycin-bodipy binding increased by 2.6 times in the presence of fosfomycin (P< 0.0001). The combination of DAP plus FOF may provide improved killing against VRE (including DAP-resistant strains) through modulation of cell surface charge. Further studies to clarify the role of intravenous FOF are warranted.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1519
Author(s):  
Leixin Ouyang ◽  
Rubia Shaik ◽  
Ruiting Xu ◽  
Ge Zhang ◽  
Jiang Zhe

Many bio-functions of cells can be regulated by their surface charge characteristics. Mapping surface charge density in a single cell’s surface is vital to advance the understanding of cell behaviors. This article demonstrates a method of cell surface charge mapping via electrostatic cell–nanoparticle (NP) interactions. Fluorescent nanoparticles (NPs) were used as the marker to investigate single cells’ surface charge distribution. The nanoparticles with opposite charges were electrostatically bonded to the cell surface; a stack of fluorescence distribution on a cell’s surface at a series of vertical distances was imaged and analyzed. By establishing a relationship between fluorescent light intensity and number of nanoparticles, cells’ surface charge distribution was quantified from the fluorescence distribution. Two types of cells, human umbilical vein endothelial cells (HUVECs) and HeLa cells, were tested. From the measured surface charge density of a group of single cells, the average zeta potentials of the two types of cells were obtained, which are in good agreement with the standard electrophoretic light scattering measurement. This method can be used for rapid surface charge mapping of single particles or cells, and can advance cell-surface-charge characterization applications in many biomedical fields.


2016 ◽  
Vol 83 ◽  
pp. 548-558 ◽  
Author(s):  
Debasis Mandal ◽  
Sandeep Kumar Dash ◽  
Balaram Das ◽  
Sourav Chattopadhyay ◽  
Totan Ghosh ◽  
...  

Chemosphere ◽  
1980 ◽  
Vol 9 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Christopher L. Haber ◽  
Thomas G. Tornabene ◽  
R.K. Skogerboe

2006 ◽  
Vol 69 (8) ◽  
pp. 1835-1843 ◽  
Author(s):  
DIKE O. UKUKU ◽  
WILLIAM F. FETT

Adherence of bacteria to cantaloupe rind is favored by surface irregularities such as roughness, crevices, and pits, thus reducing the ability of washing or sanitizer treatments to remove or inactivate attached cells. In this study, we compared the surface charge and hydrophobicity of two cantaloupe-related outbreak strains of Salmonella Poona (RM2350 and G-91-1595) to those of 14 additional Salmonella strains using electrostatic and hydrophobic interaction chromatography. The relative abilities of the 16 strains to attach to cantaloupe surfaces and resist removal by washing with water, chlorine (200 ppm), or hydrogen peroxide (2.5%) for 5 min after a storage period of up to 7 days at 5 to 20°C also were determined. Whole cantaloupes were inoculated with each pathogen at 8.36 log CFU/ml, dried for 1 h inside a biosafety cabinet, stored, and then subjected to the washing treatments. Only the positive surface charge of the two cantaloupe-related strains of Salmonella Poona was significantly higher (P &lt; 0.05) than that of the other strains. Initial bacterial attachment to cantaloupe surfaces ranged from 3.68 to 4.56 log CFU/cm2 (highest values for Salmonella Michigan, Newport, Oranienburg, and Mbandaka). The average percentage of the total bacterial population strongly attached to the cantaloupe surface for the Salmonella serovars studied ranged from 0.893 to 0.946 at 5°C and from 0.987 to 0.999 at 25°C. Washing inoculated melons with water did not produce a significant reduction in the concentration of the pathogens (P &gt; 0.05). Chlorine and hydrogen peroxide treatments caused an average 3-log reduction when applied 20 to 40 min postinoculation. However, sanitizer treatments applied 60 min or more postinoculation were less effective (approximately 2.5-log reduction). No significant differences were noted in sanitizer efficacy against the individual strains (P &gt; 0.05). The two cantaloupe-related outbreak Salmonella Poona strains did not significantly differ from the other Salmonella strains tested in negative cell surface charge or hydrophobicity, were not more effective in attaching to whole melon surfaces, and were not more resistant to the various washing treatments when present on rinds.


2019 ◽  
Vol 15 (5) ◽  
pp. e1007730 ◽  
Author(s):  
Robert E. Smith ◽  
Bartłomiej Salamaga ◽  
Piotr Szkuta ◽  
Natalia Hajdamowicz ◽  
Tomasz K. Prajsnar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document