Growth stage dependence of the grain yield response to ozone in spring wheat (Triticum aestivum L.)

1998 ◽  
Vol 70 (1) ◽  
pp. 61-68 ◽  
Author(s):  
H Pleijel ◽  
H Danielsson ◽  
J Gelang ◽  
E Sild ◽  
G Selldén
1990 ◽  
Vol 70 (1) ◽  
pp. 51-60 ◽  
Author(s):  
D. T. GEHL ◽  
L. D. BAILEY ◽  
C. A. GRANT ◽  
J. M. SADLER

A 3-yr study was conducted on three Orthic Black Chernozemic soils to determine the effects of incremental N fertilization on grain yield and dry matter accumulation and distribution of six spring wheat (Triticum aestivum L.) cultivars. Urea (46–0–0) was sidebanded at seeding in 40 kg N ha−1 increments from 0 to 240 kg ha−1 in the first year and from 0 to 200 kg ha−1 in the 2 subsequent years. Nitrogen fertilization increased the grain and straw yields of all cultivars in each experiment. The predominant factor affecting the N response and harvest index of each cultivar was available moisture. At two of the three sites, 91% of the interexperiment variability in mean maximum grain yield was explained by variation in root zone moisture at seeding. Mean maximum total dry matter varied by less than 12% among cultivars, but mean maximum grain yield varied by more than 30%. Three semidwarf cultivars, HY 320, Marshall and Solar, had consistently higher grain yield and grain yield response to N than Glenlea and Katepwa, two standard height cultivars, and Len, a semidwarf. The mean maximum grain yield of HY 320 was the highest of the cultivars on test and those of Katepwa and Len the lowest. Len produced the least straw and total dry matter. The level of N fertilization at maximum grain yield varied among cultivars, sites and years. Marshall and Solar required the highest and Len the lowest N rates to achieve maximum grain yield. The year-to-year variation in rates of N fertilization needed to produce maximum grain yield on a specific soil type revealed the limitations of N fertility recommendations based on "average" amounts and temporal distribution of available moisture.Key words: Wheat (spring), N response, standard height, semidwarf, grain yield


1995 ◽  
Vol 75 (2) ◽  
pp. 405-411 ◽  
Author(s):  
J. O. Owuoche ◽  
K. G. Briggs ◽  
G. J. Taylor ◽  
D. C. Penney

Concentrations of copper (Cu) in the youngest fully emerged leaves (YFEL) and grain of eight widely grown Canadian spring wheat (Triticum aestivum L.) cultivars, Biggar, Columbus, Conway, Katepwa, Laura, Oslo, Park and Roblin, were determined. Leaves were sampled at five growth stages from field plots grown in 1990 and 1991 on Cu-deficient soil or soil treated with 12.2 kg Cu ha−1 as Cu sulphate. Symptoms of Cu deficiency, mainly rolling and wilting of young leaves and twisting and terminal dieback, were noted on Katepwa, Park and Roblin at Zadok growth stage 24. Significant (P ≤ 0.01) effects on Cu concentration in the YFEL were found due to cultivar, copper treatment, year and growth stage. The Cu concentrations in Katepwa, Park and Roblin not treated with Cu ranged between 4.6 and 5.7 μg g−1 in 1990 and between 2.8 and 3.5 μg g−1 in 1991 at Zadok growth stage 22. Cultivars Biggar, Columbus, Conway, Laura and Oslo did not show symptoms of Cu deficiency and had Cu concentrations in the range of 4.6–5.4 μg g−1 in 1990 and 2.3–3.1 μg g−1 in 1991. Deficiency symptoms were observed on Katepwa and Park supplied with Cu, although concentrations of Cu in the YFEL were relatively high. Grains sampled from the tillers generally had lower Cu concentrations than those from main stems, but the magnitude of this difference varied with the year. Significant correlations were found between Cu concentrations in the YFEL and grain yield (r = 0.90* in 1990 and 0.89* in 1991) and with floret fertility (r = 0.74* in 1990 and 0.94** in 1991). These large and significant correlations confirm the important role of Cu nutritional status in influencing floret fertility and grain yield. Critical levels of Cu in the leaves needed for unlimited growth could not be defined because of year-to-year variability. In this study, Cu concentration in the YFEL was not a useful indicator of potential Cu use efficiency in different wheat cultivars. However, for individual plants under Cu-deficiency stress, Cu concentration in the YFEL was a good indicator of the grain yield potential of different cultivars. Key words:Triticum aestivum, copper, youngest fully emerged leaves, tissue analysis


2009 ◽  
Vol 89 (6) ◽  
pp. 1099-1106 ◽  
Author(s):  
R S Sadasivaiah ◽  
R J Graf ◽  
H S Randhawa ◽  
B L Beres ◽  
S M Perkovic ◽  
...  

Sadash is a soft white spring wheat (Triticum aestivum L.) that meets the end-use quality specifications of the Canada Western Soft White Spring class. Sadash is well-adapted to the wheat-growing regions of southern Alberta and southern Saskatchewan. Based on data from the Western Soft White Spring Wheat Cooperative Registration Test from 2003 to 2005, Sadash exhibited high grain yield, mid-season maturity, semi-dwarf stature with very strong straw, and good resistance to shattering. Sadash expressed resistance to the prevalent races of stem rust and powdery mildew, intermediate resistance to loose smut, moderate susceptibility to leaf rust and common bunt, and susceptibility to Fusarium head blight. Based on end-use quality analysis performed at the Grain Research Laboratory of the Canadian Grain Commission, Sadash had improved test weight over the check cultivars AC Reed and AC Phil and similar milling and baking performance.Key words: Triticum aestivum L., cultivar description, wheat (soft white spring), grain yield, quality, disease resistance


1992 ◽  
Vol 72 (2) ◽  
pp. 459-463 ◽  
Author(s):  
H. W. Cutforth ◽  
F. Selles

A field study was carried out to determine the effects of seed row configuration on days to maturity, water use and grain yield of spring wheat (Triticum aestivum L. ’Leader’) grown in a semiarid environment. From 1986 to 1989, Leader spring wheat was seeded at Swift Current, Saskatchewan in north-south equidistant-rows (25-cm row spacing) and paired-rows (two rows 10 cm apart with 50 cm between the centre of each paired row). Seed and fertilizer were applied at recommended rates for the Brown soil zone. There were no significant differences (P > 0.10) in grain yield, water use or days to maturity between equidistant-row and paired-row seeding. The data suggest that under the environmental conditions of the Brown soil zone paired-row seeding may have no agronomic advantage over equidistant-row seeding.Key words: Paired-row seeding, water use, grain yield, spring wheat


2008 ◽  
Vol 88 (3) ◽  
pp. 513-518 ◽  
Author(s):  
R. E. Knox ◽  
R. M. DePauw ◽  
F. R. Clarke ◽  
F. R. Clarke ◽  
T. N. McCaig ◽  
...  

Based on 38 replicated trials over 3 yr, Alvena, hard red spring wheat (Triticum aestivum L.) expressed significantly higher mean grain yield than the checks. It was significantly earlier maturing than AC Barrie and significantly more resistant to lodging than Katepwa. Wheat protein concentration of Alvena was similar to the mean of the checks and flour protein concentration was significantly higher than the check mean. Amylograph viscosity was significantly lower than the mean of the checks. Alvena meets the end-use quality and Canadian Grain Commission’s kernel visual distinguishability specifications of the Canada Western Red Spring wheat market class. Alvena expressed moderate resistance to prevalent races of loose smut and stem rust, intermediate resistance to prevalent races of leaf rust and common bunt, and moderate susceptibility to fusarium head blight. Key words: Triticum aestivum L., cultivar description, grain yield, maturity, disease resistance


1989 ◽  
Vol 69 (4) ◽  
pp. 1245-1250 ◽  
Author(s):  
R. M. DE PAUW ◽  
T. F. TOWNLEY-SMITH ◽  
T. N. McCAIG ◽  
J. M. CLARKE ◽  
J. G. McLEOD ◽  
...  

HY355, white spring wheat (Triticum aestivum L.) combines high grain yield, normal height and photoperiod insensitivity. HY355 is heterogeneous for kernel hardness with 55% of the breeder lines rated hard and 45% rated soft. HY355 is the first registered wheat cultivar eligible for grades of Canada Prairie Spring (white). It received a 2-yr interim registration on 6 May 1988.Key words: Wheat (spring), cultivar description


1971 ◽  
Vol 51 (1) ◽  
pp. 25-28 ◽  
Author(s):  
F. H. McNEAL ◽  
M. A. BERG ◽  
V. R. STEWART ◽  
C. F. McGUIRE

Glabrous- and pubescent-glumed populations of spring wheat, Triticum aestivum L., were derived by bulking seed from F2 plants and F3 lines. These near-isogenic populations were evaluated at two locations for grain yield and other plant variables and for grain quality. Agronomic data indicated that the gene governing glume pubescence had little, if any, influence on plant productivity. The small quality differences between pubescent and glabrous types, even though significant in a few cases, are considered too small to have a major beneficial effect on a population.


2005 ◽  
Vol 85 (2) ◽  
pp. 397-401 ◽  
Author(s):  
R. M. DePauw ◽  
T. F. Townley-Smith ◽  
G. Humphreys ◽  
R. E. Knox ◽  
F. R. Clarke ◽  
...  

Lillian, hard red spring wheat (Triticum aestivum L.), exhibited reduced cutting by the wheat stem sawfly (Cephus cinctus Nort.) and is adapted to the Canadian prairies. Lillian produced significantly more grain yield than AC Abbey and Neepawa and its grain yield and protein concentration were similar to AC Barrie. It matured significantly earlier than Superb and Laura, and had improved resistance to leaf rust and leaf spotting diseases compared to AC Abbey. Lillian is eligible for all grades of the Canada Western Red Spring (CWRS) wheat class. Key words: Triticum aestivum L., cultivar description, grain yield and protein, resistance wheat stem sawfly, leaf and stem rust


1969 ◽  
Vol 49 (6) ◽  
pp. 769-771 ◽  
Author(s):  
F. H. McNeal ◽  
M. A. Berg ◽  
D. E. Baldridge

White- and brown-glumed populations of spring wheat, Triticum aestivum L., derived by compositing seed from F2 plants and F3 lines, were evaluated at two locations for grain quality, grain yield, and other plant variables. The similarity of data from the two populations suggests that the gene, or genes, governing brown glume has little, if any, influence on most of the agronomic and quality characteristics of spring wheat, although small differences were observed in plant height at Bozeman, in spikelets per head at Huntley, and in farinograph stability at Bozeman.


2009 ◽  
Vol 89 (5) ◽  
pp. 945-951 ◽  
Author(s):  
R M DePauw ◽  
R E Knox ◽  
F R Clarke ◽  
J M Clarke ◽  
T N McCaig

Based on 34 replicated trials over 3 yr, Stettler, a doubled haploid hard red spring wheat (Triticum aestivum L.), expressed significantly higher grain yield than all checks except Superb. Wheat and flour protein concentration were significantly greater than all of the checks except Lillian. It matured significantly later than AC Barrie and Katepwa but earlier than Superb. Stettler was significantly shorter than all of the checks except Superb and was more resistant to lodging than Katepwa and Laura. Stettler had high grain volume weight and intermediate kernel weight relative to the checks, and meets the end-use quality specifications of the Canada Western Red Spring wheat market class. Stettler expressed resistance to prevalent races of stem rust, common bunt and loose smut, with moderate susceptibility to prevalent races of leaf rust and fusarium head blight.Key words: Triticum aestivum L., cultivar description, grain yield, protein, disease resistance, doubled haploid


Sign in / Sign up

Export Citation Format

Share Document