The correlations between HBV markers and HBV cccDNA in the patients during Na treatment

2020 ◽  
Vol 73 ◽  
pp. S842
Author(s):  
Matsui Takeshi ◽  
Kang Jong-Hon ◽  
Kazunari Tanaka ◽  
Ryosuke Minami ◽  
Tsuji Kunihiko ◽  
...  
Keyword(s):  
Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1463
Author(s):  
Lei Wei ◽  
Alexander Ploss

Hepatitis B virus (HBV) remains a major medical problem affecting at least 257 million chronically infected patients who are at risk of developing serious, frequently fatal liver diseases. HBV is a small, partially double-stranded DNA virus that goes through an intricate replication cycle in its native cellular environment: human hepatocytes. A critical step in the viral life-cycle is the conversion of relaxed circular DNA (rcDNA) into covalently closed circular DNA (cccDNA), the latter being the major template for HBV gene transcription. For this conversion, HBV relies on multiple host factors, as enzymes capable of catalyzing the relevant reactions are not encoded in the viral genome. Combinations of genetic and biochemical approaches have produced findings that provide a more holistic picture of the complex mechanism of HBV cccDNA formation. Here, we review some of these studies that have helped to provide a comprehensive picture of rcDNA to cccDNA conversion. Mechanistic insights into this critical step for HBV persistence hold the key for devising new therapies that will lead not only to viral suppression but to a cure.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 187
Author(s):  
Gian Paolo Caviglia ◽  
Angelo Armandi ◽  
Chiara Rosso ◽  
Davide Giuseppe Ribaldone ◽  
Rinaldo Pellicano ◽  
...  

Hepatitis B virus (HBV) covalently-closed-circular (ccc)DNA is the key molecule responsible for viral persistence within infected hepatocytes. The evaluation of HBV cccDNA is crucial for the management of patients with chronic HBV infection and for the personalization of treatment. However, the need for liver biopsy is the principal obstacle for the assessment of intrahepatic HBV cccDNA. In the last decade, several studies have investigated the performance of hepatitis B core-related antigen (HBcrAg) as a surrogate of HBV cccDNA amount in the liver. In this meta-analysis, we collected 14 studies (1271 patients) investigating the correlation between serum HBcrAg and intrahepatic HBV cccDNA. Serum HBcrAg showed a high correlation with intrahepatic HBV cccDNA (r = 0.641, 95% confidence interval (CI) 0.510–0.743, p < 0.001). In a head-to-head comparison, we observed that the performance of HBcrAg was significantly superior to that of hepatitis B surface antigen (r = 0.665 vs. r = 0.475, respectively, p < 0.001). Subgroup analysis showed that the correlation between HBcrAg and intrahepatic HBV cccDNA was high, both in hepatitis B e antigen-positive and -negative patients (r = 0.678, 95% CI 0.403–0.840, p < 0.001, and r = 0.578, 95% CI 0.344–0.744, p < 0.001, respectively). In conclusion, the measurement of serum HBcrAg qualifies as a reliable non-invasive surrogate for the assessment of an intrahepatic HBV cccDNA reservoir.


Author(s):  
Yan Qiu ◽  
Ying Liu ◽  
Wen Ren ◽  
Jing Ren

BACKGROUND: Chronic hepatitis B infected with Hepatitis B virus remains a major health concern worldwide. Despite standard interferon-&alpha; and nucleotide analogues have been shown to reduce the deterioration of liver disease among chronic hepatitis B patients, covalently closed circular DNA was still difficult to eradicate. METHODS: A literature search of Pubmed and Web of science was performed with the following key words: &lsquo;CRISPR&rsquo;, &lsquo;CRISPR/Cas9&rsquo;, &lsquo;hepatitis B&rsquo;, &lsquo;HBV&rsquo;, &lsquo;chronic hepatitis B&rsquo; and &lsquo;HBV cccDNA&rsquo;. The information about CRISPR/Cas9 for the treatment of HBV cccDNA or hepatitis B was reviewed. RESULTS: CRISPR/Cas9 could treat hepatitis B through suppressing or clearing HBV cccDNA with different gRNAs. CONCLUSION: With the emergence of CRISPR/Cas9 (the RNA-guided clustered regulatory interspaced short palindromic repeats, CRISPR) editing technology, clearance of hepatitis B virus and better prevention of liver carcinoma seemed to be possible.


2019 ◽  
Vol 58 (2) ◽  
Author(s):  
Ni Lin ◽  
Aizhu Ye ◽  
Jinpiao Lin ◽  
Can Liu ◽  
Jinlan Huang ◽  
...  

ABSTRACT Pregenomic RNA (pgRNA) is a direct transcription product of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), and it plays important roles in viral genome amplification and replication. This study was designed to investigate whether serum pgRNA is a strong alternative marker for reflecting HBV cccDNA levels and to analyze the correlation between serum pgRNA, serum HBV DNA, and hepatitis B surface antigen (HBsAg). A total of 400 HBV-infected patients who received nucleos(t)ide analog (NA) therapy with different clinical outcomes were involved in this research. Case groups included asymptomatic hepatitis B virus carrier (ASC), chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC) patients, with 100 patients in each group. The results showed that the levels of HBV pgRNA had significant differences between these 4 groups. Serum pgRNA levels correlated well with serum HBV DNA and HBsAg levels (HBV pgRNA levels versus HBV DNA levels, r = 0.58, P < 0.001; HBV pgRNA levels versus HBsAg levels, r = 0.47, P < 0.001). In addition, we focused on the 108 HBV-infected patients with HBV DNA levels of <500 IU/ml; it was surprising to find that in 17.57% (13/74) of cases, HBV pgRNA could be detected even when the HBV DNA level was below 20 IU/ml. In conclusion, HBV pgRNA levels in serum can be a surrogate marker for intrahepatic HBV cccDNA compared with serum HBV DNA and HBsAg. The detection of serum HBV pgRNA levels may provide a reference for clinical monitoring of cccDNA levels and the selection of appropriate timing for discontinuing antiviral therapy, especially when HBV DNA levels are below the detection limit.


2019 ◽  
Vol 20 (17) ◽  
pp. 4276 ◽  
Author(s):  
Mohd-Ismail ◽  
Lim ◽  
Gunaratne ◽  
Tan

Hepatitis B virus (HBV) infection is a major health problem affecting about 300 million people globally. Although successful administration of a prophylactic vaccine has reduced new infections, a cure for chronic hepatitis B (CHB) is still unavailable. Current anti-HBV therapies slow down disease progression but are not curative as they cannot eliminate or permanently silence HBV covalently closed circular DNA (cccDNA). The cccDNA minichromosome persists in the nuclei of infected hepatocytes where it forms the template for all viral transcription. Interactions between host factors and cccDNA are crucial for its formation, stability, and transcriptional activity. Here, we summarize the reported interactions between HBV cccDNA and various host factors and their implications on HBV replication. While the virus hijacks certain cellular processes to complete its life cycle, there are also host factors that restrict HBV infection. Therefore, we review both positive and negative regulation of HBV cccDNA by host factors and the use of small molecule drugs or sequence-specific nucleases to target these interactions or cccDNA directly. We also discuss several reporter-based surrogate systems that mimic cccDNA biology which can be used for drug library screening of cccDNA-targeting compounds as well as identification of cccDNA-related targets.


Sign in / Sign up

Export Citation Format

Share Document