Quaternary Structure of Phosphoenolpyruvate Carboxylase from CAM-C4- and C3-Plants - No Evidence for Diurnal Changes in Oligomeric State

1992 ◽  
Vol 140 (6) ◽  
pp. 653-660 ◽  
Author(s):  
Micheline Weigend ◽  
Dirk K. Hincha
1987 ◽  
Vol 84 (1) ◽  
pp. 58-60 ◽  
Author(s):  
Eva Melzer ◽  
Marion H. O'Leary

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Stefan W. Metz ◽  
Ashlie Thomas ◽  
Alex Brackbill ◽  
John Forsberg ◽  
Michael J. Miley ◽  
...  

Abstract The current leading Zika vaccine candidates in clinical testing are based on live or killed virus platforms, which have safety issues, especially in pregnant women. Zika subunit vaccines, however, have shown poor performance in preclinical studies, most likely because the antigens tested do not display critical quaternary structure epitopes present on Zika E protein homodimers that cover the surface of the virus. Here, we produce stable recombinant E protein homodimers that are recognized by strongly neutralizing Zika specific monoclonal antibodies. In mice, the dimeric antigen stimulate strongly neutralizing antibodies that target epitopes that are similar to epitopes recognized by human antibodies following natural Zika virus infection. The monomer antigen stimulates low levels of E-domain III targeting neutralizing antibodies. In a Zika challenge model, only E dimer antigen stimulates protective antibodies, not the monomer. These results highlight the importance of mimicking the highly structured flavivirus surface when designing subunit vaccines.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 935
Author(s):  
James G. Hyatt ◽  
Sylvain Prévost ◽  
Juliette M. Devos ◽  
Courtney J. Mycroft-West ◽  
Mark A. Skidmore ◽  
...  

Dengue fever is a rapidly emerging vector-borne viral disease with a growing global burden of approximately 390 million new infections per annum. The Dengue virus (DENV) is a flavivirus spread by female mosquitos of the aedes genus, but the mechanism of viral endocytosis is poorly understood at a molecular level, preventing the development of effective transmission blocking vaccines (TBVs). Recently, glycosaminoglycans (GAGs) have been identified as playing a role during initial viral attachment through interaction with the third domain of the viral envelope protein (EDIII). Here, we report a systematic study investigating the effect of a range of biologically relevant GAGs on the structure and oligomeric state of recombinantly generated EDIII. We provide novel in situ biophysical evidence that heparin and chondroitin sulphate C induce conformational changes in EDIII at the secondary structure level. Furthermore, we report the ability of chondroitin sulphate C to bind EDIII and induce higher-order dynamic molecular changes at the tertiary and quaternary structure levels which are dependent on pH, GAG species, and the GAG sulphation state. Lastly, we conducted ab initio modelling of Small Angle Neutron Scattering (SANS) data to visualise the induced oligomeric state of EDIII caused by interaction with chondroitin sulphate C, which may aid in TBV development.


2016 ◽  
Vol 36 (6) ◽  
Author(s):  
Benjamin W. Arentson ◽  
Erin L. Hayes ◽  
Weidong Zhu ◽  
Harkewal Singh ◽  
John J. Tanner ◽  
...  

Proline utilization A (PutA) is a bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) domains that catalyses the two-step oxidation of proline to glutamate. Trifunctional PutAs also have an N-terminal ribbon–helix–helix (RHH) DNA-binding domain and moonlight as autogenous transcriptional repressors of the put regulon. A unique property of trifunctional PutA is the ability to switch functions from DNA-bound repressor to membrane-associated enzyme in response to cellular nutritional needs and proline availability. In the present study, we attempt to construct a trifunctional PutA by fusing the RHH domain of Escherichia coli PutA (EcRHH) to the bifunctional Rhodobacter capsulatus PutA (RcPutA) in order to explore the modular design of functional switching in trifunctional PutAs. The EcRHH–RcPutA chimaera retains the catalytic properties of RcPutA while acquiring the oligomeric state, quaternary structure and DNA-binding properties of EcPutA. Furthermore, the EcRHH–RcPutA chimaera exhibits proline-induced lipid association, which is a fundamental characteristic of functional switching. Unexpectedly, RcPutA lipid binding is also activated by proline, which shows for the first time that bifunctional PutAs exhibit a limited form of functional switching. Altogether, these results suggest that the C-terminal domain (CTD), which is conserved by trifunctional PutAs and certain bifunctional PutAs, is essential for functional switching in trifunctional PutAs.


2004 ◽  
Vol 24 (17) ◽  
pp. 7331-7344 ◽  
Author(s):  
Kleber P. Madrid ◽  
Gregory De Crescenzo ◽  
Shengwu Wang ◽  
Armando Jardim

ABSTRACT The import of proteins containing the peroxisomal targeting signal 1 (PTS1) into the Leishmania glycosome is dependent on the docking of the PTS1-loaded LdPEX5 cytosolic receptor with LdPEX14 on the glycosome surface. Here we show that, in the absence of PTS1, LdPEX5 is a tetramer that is stabilized by two distinct interaction domains; the first is a coiled-coil motif encompassing residues 277 to 310, whereas the second domain is localized to residues 1 to 202. By using microcalorimetry, surface plasmon resonance, and size exclusion chromatography techniques, we show that PTS1 peptide binding to LdPEX5 tetramers promotes their dissociation into dimeric structures, which are stabilized by a coiled-coil interaction. Moreover, we demonstrated that the resulting LdPEX5-PTS1 complex is remarkably stable and exhibits extremely slow dissociation kinetics. However, binding of LdPEX14 to LdPEX5 modulates the LdPEX5-PTS1 affinity as it decreases the thermodynamic dissociation constant for this latter complex by 10-fold. These changes in the oligomeric state of LdPEX5 and in its affinity for PTS1 ligand upon LdPEX14 binding may explain how, under physiological conditions, LdPEX5 can function to deliver and unload its cargo to the protein translocation machinery on the glycosomal membrane.


Sign in / Sign up

Export Citation Format

Share Document