Minimal effects of preclinical Alzheimer's disease on cross-sectional age-related cognitive deficits: Evidence from the Kungsholmen study

2000 ◽  
Vol 21 ◽  
pp. 150
Author(s):  
Erika Jonsson ◽  
Oke Wahlin
Intelligence ◽  
2018 ◽  
Vol 70 ◽  
pp. 22-29 ◽  
Author(s):  
Karra D. Harrington ◽  
Christa Dang ◽  
Yen Ying Lim ◽  
David Ames ◽  
Simon M. Laws ◽  
...  

2013 ◽  
Vol 13 (2-3) ◽  
pp. 82-85 ◽  
Author(s):  
Caroline Ménard ◽  
Herbert Herzog ◽  
Christoph Schwarzer ◽  
Rémi Quirion

2021 ◽  
pp. 1-17
Author(s):  
Shehroo B. Pudumjee ◽  
Emily S. Lundt ◽  
Sabrina M. Albertson ◽  
Mary M. Machulda ◽  
Walter K. Kremers ◽  
...  

Background: Longitudinal, but not cross-sectional, cognitive testing is one option proposed to define transitional cognitive decline for individuals on the Alzheimer’s disease continuum. Objective: Compare diagnostic accuracy of cross-sectional subtle objective cognitive impairment (sOBJ) and longitudinal objective decline (ΔOBJ) over 30 months for identifying 1) cognitively unimpaired participants with preclinical Alzheimer’s disease defined by elevated brain amyloid and tau (A+T+) and 2) incident mild cognitive impairment (MCI) based on Cogstate One Card Learning (OCL) accuracy performance. Methods: Mayo Clinic Study of Aging cognitively unimpaired participants aged 50 + with amyloid and tau PET scans (n = 311) comprised the biomarker-defined sample. A case-control sample of participants aged 65 + remaining cognitively unimpaired for at least 30 months included 64 who subsequently developed MCI (incident MCI cases) and 184 controls, risk-set matched by age, sex, education, and visit number. sOBJ was assessed by OCL z-scores. ΔOBJ was assessed using within subjects’ standard deviation and annualized change from linear regression or linear mixed effects (LME) models. Concordance measures Area Under the ROC Curve (AUC) or C-statistic and odds ratios (OR) from conditional logistic regression models were derived. sOBJ and ΔOBJ were modeled jointly to compare methods. Results: sOBJ and ΔOBJ-LME methods differentiated A+T+ from A-T- (AUC = 0.64, 0.69) and controls from incident MCI (C-statistic = 0.59, 0.69) better than chance; other ΔOBJ methods did not. ΔOBJ-LME improved prediction of future MCI over baseline sOBJ (p = 0.003) but not over 30-month sOBJ (p = 0.09). Conclusion: Longitudinal decline did not offer substantial benefit over cross-sectional assessment in detecting preclinical Alzheimer’s disease or incident MCI.


2020 ◽  
Vol 20 (15) ◽  
pp. 1415-1421 ◽  
Author(s):  
Friedrich Leblhuber ◽  
Kostja Steiner ◽  
Simon Geisler ◽  
Dietmar Fuchs ◽  
Johanna M. Gostner

Dementia is an increasing health problem in older aged populations worldwide. Age-related changes in the brain can be observed decades before the first symptoms of cognitive decline appear. Cognitive impairment has chronic inflammatory components, which can be enhanced by systemic immune activation. There exist mutual interferences between inflammation and cognitive deficits. Signs of an activated immune system i.e. increases in the serum concentrations of soluble biomarkers such as neopterin or accelerated tryptophan breakdown along the kynurenine axis develop in a significant proportion of patients with dementia and correlate with the course of the disease, and they also have a predictive value. Changes in biomarker concentrations are reported to be associated with systemic infections by pathogens such as cytomegalovirus (CMV) and bacterial content in saliva. More recently, the possible influence of microbiome composition on Alzheimer’s disease (AD) pathogenesis has been observed. These observations suggest that brain pathology is not the sole factor determining the pathogenesis of AD. Interestingly, patients with AD display drastic changes in markers of immune activation in the circulation and in the cerebrospinal fluid. Other data have suggested the involvement of factors extrinsic to the brain in the pathogenesis of AD. However, currently, neither the roles of these factors nor their importance has been clearly defined.


2003 ◽  
Vol 107 ◽  
pp. 29-33 ◽  
Author(s):  
Brent J. Small ◽  
Jennifer L. Mobly ◽  
Erika Jonsson Laukka ◽  
Sari Jones ◽  
Lars Bäckman

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Nanbu Wang ◽  
Haoyu Wang ◽  
Qi Pan ◽  
Jian Kang ◽  
Ziwen Liang ◽  
...  

β-Asarone is the main constituent of Acorus tatarinowii Schott and exhibits important effects in diseases such as neurodegenerative and neurovascular diseases. Icariin (ICA) is a major active ingredient of Epimedium that has attracted increasing attention because of its unique pharmacological effects in degenerative disease. In this paper, we primarily explored the effects of the combination of β-asarone and ICA in clearing noxious proteins and reversing cognitive deficits. The accumulation of damaged mitochondria and mitophagy are hallmarks of aging and age-related neurodegeneration, including Alzheimer’s disease (AD). Here, we provide evidence that autophagy/mitophagy is impaired in the hippocampus of APP/PS1 mice and in Aβ1-42-induced PC12 cell models. Enhanced mitophagic activity has been reported to promote Aβ and tau clearance in in vitro and in vivo models. Meanwhile, there is growing evidence that treatment of AD should be preceded by intervention before the formation of pathological products. The efficacy of the combination therapy was better than that of the individual therapies applied separately. Then, we found that the combination therapy also inhibited cell and mitochondrial damage by inducing autophagy/mitophagy. These findings suggest that impaired removal of defective mitochondria is a pivotal event in AD pathogenesis, and that combination treatment with mitophagy inducers represents a potential strategy for therapeutic intervention.


Author(s):  
VIVEK SHARMA

Neurodegenerative disorders involve complexities of the pathologies, characterized by the progressive loss of neuronal viability, leading to severe physical and cognitive impairments in affected patients. These disorders although may differ in clinical outcomes yet they share common features such as aggregation of neurotoxic metabolites and perturbed cellular and neuronal homeostasis. Mitochondrion is an indispensable organelle for neuronal survival, and its role and place have become critical in research arena of aging and neurodegenaration. The accumulation of damaged mitochondria has been linked to normal aging and multiple age-related disorders including Alzheimer’s disease (AD). Survival and proper function of mitochondria depend on several attributes that include mitochondrial biogenesis and fusion and fission. Mitophagy is an utmost requirement for degradation and removal of damaged mitochondria where the target mitochondria are identified by the autophagosomes and delivered to the lysosome for degradation. Mitophagy plays important roles in mitochondrial homeostasis, neuroprotection, and resistance to neurodegeneration. AD besides other characteristic features involves mitochondrial dysfunctional, bioenergetic deficit, and altered mitophagy. The autophagy/lysosome pathway that removes damaged mitochondria (mitophagy) is compromised in AD, resulting in the accumulation of dysfunctional mitochondria that contribute to synaptic dysfunction and cognitive deficits by triggering Aβ and Tau accumulation through increases in oxidative damage and cellular energy deficits. The present work reviews the various implications of mitophagy in relevance to the pathology of AD.


Sign in / Sign up

Export Citation Format

Share Document