The study of thermal stability of the SiO2 powders with high specific surface area

1999 ◽  
Vol 57 (3) ◽  
pp. 260-263 ◽  
Author(s):  
Liwei Wang ◽  
Zichen Wang ◽  
Hua Yang ◽  
Guangli Yang
2004 ◽  
Vol 20 (03) ◽  
pp. 251-255
Author(s):  
Zeng Li ◽  
◽  
Wang Chun-Ming ◽  
Wei Ji-Ying ◽  
Zhu Yue-Xiang ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (31) ◽  
pp. 26271-26279 ◽  
Author(s):  
Jingfeng Yang ◽  
Qihua Wang ◽  
Tingmei Wang ◽  
Yongmin Liang

In this study, we developed a new and rapid preparation method of alumina aerogels based on the sol–gel method and supercritical drying technique and prepared alumina aerogels with high specific surface area.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


2021 ◽  
Vol 45 (12) ◽  
pp. 5712-5719
Author(s):  
Yongxiang Zhang ◽  
Peifeng Yu ◽  
Mingtao Zheng ◽  
Yong Xiao ◽  
Hang Hu ◽  
...  

Porous carbons with a high specific surface area (2314–3470 m2 g−1) are prepared via a novel KCl-assisted activation strategy for high-performance supercapacitor.


Sign in / Sign up

Export Citation Format

Share Document