Poiseuille flow of purely viscous non-Newtonian fluids through ducts of non-circular cross section

Author(s):  
I. Machač ◽  
P. Doleček ◽  
L. Machačová
2017 ◽  
Vol 813 ◽  
pp. 750-767 ◽  
Author(s):  
Yusuke Morita ◽  
Tomoaki Itano ◽  
Masako Sugihara-Seki

An experimental study of the inertial migration of neutrally buoyant spherical particles suspended in the Poiseuille flow through circular tubes has been conducted at Reynolds numbers $(Re)$ from 100 to 1100 for particle-to-tube diameter ratios of ${\sim}$0.1. The distributions of particles in the tube cross-section were measured at various distances from the tube inlet and the radial probability function of particles was calculated. At relatively high $Re$, the radial probability function was found to have two peaks, corresponding to the so-called Segre–Silberberg annulus and the inner annulus, the latter of which was first reported experimentally by Matas et al. (J. Fluid Mech. vol. 515, 2004, pp. 171–195) to represent accumulation of particles at smaller radial positions than the Segre–Silberberg annulus. They assumed that the inner annulus would be an equilibrium position of particles, where the resultant lateral force on the particles disappears, similar to the Segre–Silberberg annulus. The present experimental study showed that the fraction of particles observed on the Segre–Silberberg annulus increased and the fraction on the inner annulus decreased further downstream, accompanying an outward shift of the inner annulus towards the Segre–Silberberg annulus and a decrease in its width. These results suggested that if the tubes were long enough, the inner annulus would disappear such that all particles would be focused on the Segre–Silberberg annulus for $Re<1000$. At the cross-section nearest to the tube inlet, particles were absent in the peripheral region close to the tube wall including the expected Segre–Silberberg annulus position for $Re>700$. In addition, the entry length after which radial migration has fully developed was found to increase with increasing $Re$, in contrast to the conventional estimate. These results may be related to the developing flow in the tube entrance region where the radial force profile would be different from that of the fully developed Poiseuille flow and there may not be an equilibrium position corresponding to the Segre–Silberberg annulus.


1972 ◽  
Vol 54 (1) ◽  
pp. 93-112 ◽  
Author(s):  
Harold Salwen ◽  
Chester E. Grosch

The stability of Poiseuille flow in a pipe of circular cross-section to azimuthally varying as well as axisymmetric disturbances has been studied. The perturbation velocity and pressure were expanded in a complete set of orthonormal functions which satisfy the boundary conditions. Truncating the expansion yielded a matrix differential equation for the time dependence of the expansion coefficients. The stability characteristics were determined from the eigenvalues of the matrix, which were calculated numerically. Calculations were carried out for the azimuthal wavenumbersn= 0,…, 5, axial wavenumbers α between 0·1 and 10·0 and αR[les ] 50000,Rbeing the Reynolds number. Our results show that pipe flow is stable to infinitesimal disturbances for all values of α,Randnin these ranges.


Author(s):  
R. S. Rivlin

In this paper, the general hydrodynamic theory of visco-inelastic, incompressible, non-Newtonian fluids, developed in a previous paper (l), is applied to the problem of the flow of such a fluid through a tube of circular cross-section. It is found that the absolute values of the normal stress components are no longer uniform over a cross-section of the tube normal to its axis, as in the case of Newtonian fluids obeying the laws of classical hydrodynamics.However, the pressure difference, between points at equal radii on two planes normal to the axis, is independent of the position of these points on the planes.


2018 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Prof. Dr. Jamal Aziz Mehdi

The biological objectives of root canal treatment have not changed over the recentdecades, but the methods to attain these goals have been greatly modified. Theintroduction of NiTi rotary files represents a major leap in the development ofendodontic instruments, with a wide variety of sophisticated instruments presentlyavailable (1, 2).Whatever their modification or improvement, all of these instruments have onething in common: they consist of a metal core with some type of rotating blade thatmachines the canal with a circular motion using flutes to carry the dentin chips anddebris coronally. Consequently, all rotary NiTi files will machine the root canal to acylindrical bore with a circular cross-section if the clinician applies them in a strictboring manner


Sign in / Sign up

Export Citation Format

Share Document