Hole number

2015 ◽  
Vol 226 (3015) ◽  
pp. 59
Keyword(s):  
Author(s):  
Müjdat Firat

The present study has been performed on heat transfer, fluid flow and formation of emissions in a diesel engine by different engine parameters. The analysis aims at an investigation of flow field, heat transfer, combustion pressure and formation of emission by means of numerical simulation which is using as parameter; hole number of injector and crank angle. Numerical simulations are performed using the AVL-FIRE commercial software depending on the crank angle. This software is successfully used in internal combustion engine applications, and its validity has been accepted. In this paper, k-zeta-f is preferred as turbulence model and SIMPLE/PISO used as algorithms. Thus, results are presented with pressure traces, temperature curves and NOx and soot levels for engine operating conditions. In addition, the relationship between the spray behaviors and combustion characteristics including NOx emissions, soot emissions, combustion pressure and temperature were illustrated through this analysis.


1993 ◽  
pp. 53-62 ◽  
Author(s):  
Akihiko MIYAJI ◽  
Kohei FURUKAWA ◽  
Kazuyuki YOSHIKAWA ◽  
Koji NAKAGAWA
Keyword(s):  

2009 ◽  
Vol 23 (03) ◽  
pp. 413-416 ◽  
Author(s):  
JI FEI WU ◽  
ZHAO LIN FAN ◽  
XIN FU LUO

An experimental investigation was conducted in a high speed wind tunnel to explore the effects of mass-injection on cavity flow characteristics. Detailed static-pressure and fluctuating pressure measurements were obtained at the cavity floor to enable the effects of the mass-injection at the leading edge to be determined. Results indicate that varying mass-injection hole number and the flux rate of mass-injection has no significant effect on cavity flow characteristics. However, mass-injection can reduce the cavity static pressure gradient when the cavity flow type is transitional-cavity flow. The study also indicates that Mach number can influence the effect of mass-injection on cavity fluctuating pressure distributions, and at supersonic speeds, mass-injection can suppress the cavity tones effectively.


2014 ◽  
Vol 602-605 ◽  
pp. 53-59
Author(s):  
Zhen Lei ◽  
Qiang Kang ◽  
Ming Sheng Zhao ◽  
En An Chi

The finite-element software ANSYS/LS-DYNA was used to study the influence of various parameters of barrier hole on the vibration-decreasing effect, such as the diameter, spacing, depth, hole number and row number of barrier holes and distance from blast holes to barrier holes. The simulation study indicates that: vibration-enhancing area and vibration-decreasing area exist together behind the barrier holes; various parameters of barrier holes can apparently affect the location, range and results of the vibration-enhancing area and the vibration-decreasing area; With bigger diameter, shorter distance, larger number and deeper barrier holes, the better vibration-decreasing results will come out; Under the conditions of numerical simulation in this paper, the effect of double-row barrier holes are better than that of single-row barrier holes, and the effect of vibration-decreasing of triangle layout form is almost the same as rectangle layout form of barrier holes; the changing distance between vibration barrier holes and blast holes will have a fluctuating effect on the vibration-decreasing effect, thus we should select the best location of vibration barrier holes based on the actual engineering conditions in practical engineering. The largest vibration-decreasing ratio of the barrier holes we have obtained at the test site is 33.3%, which is successfully utilized in the production explosion, so we have verified effectiveness of vibration-decreasing effect of the barrier holes.


Sign in / Sign up

Export Citation Format

Share Document